
Citation: Kashiwagi H, Yuhki K, Imamichi Y, Kojima F, Kumei S, Narumiya S, et al. Roles of Prostanoids in the 
Regulation of Platelet Function. Thromb Haemost Res. 2018; 2(2): 1014.

Thromb Haemost Res - Volume 2 Issue 2 - 2018
Submit your Manuscript | www.austinpublishinggroup.com 
Kashiwagi et al. © All rights are reserved

Thrombosis & Haemostasis: Research
Open Access

Abstract

Prostanoids consisting of Prostaglandins (PGs) and Thromboxane (TX) 
exert a wide range of actions in the body through their respective receptors. 
Regulation of platelet function is one of the actions of prostanoids. Platelets 
participate critically in the pathogenesis of thrombotic diseases. Activated 
platelets aggregate and release various bioactive substances. Aggregation is 
the most notable criterion for evaluation of platelet activation. In this article, 
the effects of PGD2, PGE1, PGE2, PGI2 and TXA2 on platelet aggregation are 
reviewed.
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Stimulatory effect of TXA2 on platelet aggregation
TXA2 is well known as a potent stimulator of platelets [4].

TP couples to Gq and activates phospholipase C (PLC), leading to 
elevation of intracellular Ca2+ concentrations. In human and rabbit 
platelets, a stable TXA2 mimetic induced platelet aggregation and 
release of granule contents from platelets [21]. Platelets express 
TP constitutively and produce TXA2 when activated with collagen, 
Adenosine Diphosphate (ADP), epinephrine, thrombin and TXA2.

Therefore, TXA2 plays an important role in the regulation of 
platelet function, working as a positive feedback regulator. In mice 
lacking TP, bleeding time was significantly prolonged compared with 
that in wild-type mice [22], suggesting that TXA2 plays an important 
role in hemostasis.

Inhibitory effect of PGI2 on platelet aggregation
In contrast to TXA2, PGI2 efficiently inhibits platelet aggregation 

[17]. The inhibitory potency of PGI2 in platelet aggregation is higher 
than that of the other inhibitory prostanoids, PGD2 and PGE1 
[23]. IP couples to Gs and increases intracellular Cyclic Adenosine 
Monophosphate (cAMP) concentrations, leading to activation of 
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Introduction
Platelets are involved not only in hemostasis but also in 

pathological thrombus formation. Activated platelets achieve their 
roles by both aggregating and releasing various bioactive substances 
such as growth factors, lysophospholipids and chemokines [1-3]. 
Accordingly, platelets play a critical role in several pathological 
conditions such as atherosclerosis, cerebral thrombosis and 
myocardial infarction [4-6].

Prostanoids consisting of Prostaglandins (PGs) and Thromboxane 
(TX) are lipid mediators that bind to cognate receptors named DP, 
EP, FP, IP and TP that are specific for PGD2, PGE2, PGF2α, PGI2 

(prostacyclin) and TXA2, respectively [7]. There are four subtypes of 
EP: EP1, EP2, EP3 and EP4 [8-11]. In these four subtypes, EP3 is unique 
and has several isoforms derived from alternative splicing [12,13]. In 
addition to these eight types and subtypes of prostanoid receptors, a 
novel PGD2 receptor that has been isolated from type 2 T helper cells 
and named CRTH2 (DP2) has no significant sequence homology of 
amino acids with DP (DP1) and other prostanoid receptors [14].

Prostanoids exert a variety of actions in various tissues and cells 
[15] via their respective receptors. Regulation of platelet function is 
one of the most well-known actions of prostanoids [16,17].

Expression of prostanoid receptors in platelets
Several prostanoid receptors have been reported to be expressed 

in platelets. EP2, EP3, EP4, IP and TP were shown to be expressed in 
murine platelets [18], and human platelets were shown to express 
DP1 along with EP2, EP3, EP4, IP and TP [19,20].
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Figure 1: Effects of prostanoids on platelet aggregation.
Prostanoids play a role in the regulation of platelet aggregation via respective 
receptors. EP3 and TP are stimulatory receptors, whereas DP1, EP2, EP4 and 
IP are inhibitory receptors in aggregation.
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protein kinase A and inhibition of platelet aggregation. Bleeding time 
in mice lacking IP was not different from that in wild-type mice, but 
the susceptibility of mice lacking IP to thrombosis was increased, 
suggesting that PGI2 is vital for the prevention of thrombus formation 
[24].

Inhibitory effect of PGD2 on platelet aggregation
In addition to PGI2, PGD2 is also known as an inhibitor of platelet 

aggregation [25]. The inhibitory effect of PGD2 on aggregation is 
observed in human and rabbit platelets but not in murine platelets 
due to the presence or absence of DP1 coupling to Gs. In human 
platelets, the inhibitory potency of PGD2 was two-times higher than 
that of PGE1 but much less than that of PGI2 [23,25].

Inhibitory effect of PGE1 on platelet aggregation
Previous studies showed that PGE1 stimulates cAMP synthesis 

and inhibits platelet aggregation [26,27]. In human platelets, PGE1 
can bind to IP as well as EPs [28]. The rank order of affinity of PGE1 
for murine EPs and IP was EP3> EP4> EP2> EP1, IP [29]. However, the 
inhibitory effect of PGE1 on human platelet aggregation was blocked 
by an IP antagonist but not by an EP4 antagonist [30], suggesting that 
PGE1 inhibits platelet aggregation via IP but not EP4, the role of which 
will be described below.

Biphasic effect of PGE2 on platelet aggregation
PGE2 has been reported to have a biphasic effect on platelet 

aggregation; PGE2 potentiates the aggregation at lower concentrations 
and inhibits it at higher concentrations [31,32]. However, PGE2 
alone could not induce platelet aggregation [18]. It has been thought 
that Gi- and Gq-mediated signaling activates platelets and that Gs-
mediated signaling inhibits platelet activation. Accordingly, among 
the EP subtypes expressed in platelets, EP3 (mainly Gi) is regarded as 
a stimulatory receptor, whereas EP2 (Gs) and EP4 (Gs) are regarded as 
inhibitory receptors in aggregation. Furthermore, EP4 signaling has 
been reported to activate phosphatidylinositol 3-kinase, leading to 
activation of protein kinase B (Akt) [33].

Potentiating effect of PGE2 at lower concentrations on platelet 
aggregation: First, the role of EP3 in the regulation of platelet 
function was examined because the expression level of EP3 mRNA 
was the highest among EP subtypes in platelets. In murine platelets 

lacking EP3, the potentiating effect of PGE2 at lower concentrations 
on platelet aggregation completely disappeared. In platelets prepared 
from wild-type mice, a specific EP3 agonist enhanced aggregation 
induced by a TP agonist in a concentration-dependent manner [18]. 
These results indicate that EP3 is involved in the potentiating effect 
of PGE2 on platelet aggregation. In agreement with the potentiating 
effect of PGE2 via EP3, the bleeding time was significantly prolonged 
and the mortality after induction of arachidonic acid-induced acute 
thromboembolism was remarkably reduced in mice lacking EP3 
compared with those in wild-type mice. Moreover, the formation of 
thrombi in pulmonary arterioles and alveolar hemorrhage observed 
after injection of arachidonic acid were alleviated in mice lacking 
EP3 [18]. Similarly, venous thrombosis induced by periadventitial 
application of arachidonic acid was almost completely abolished, 
although the bleeding time was not significantly prolonged in 
mice lacking EP3 [34]. Furthermore, a previous study showed that 
atherosclerotic plaque-produced PGE2 activated platelets through EP3 
and promoted atherothrombosis when the plaque was mechanically 
ruptured [35]. These results indicate that PGE2 plays an important 
role in thromboembolism through activation of platelets via EP3.

Inhibitory effect of PGE2 at higher concentrations on platelet 
aggregation: It has been suggested that the inhibitory effect of PGE2 
on platelet aggregation is mediated by IP [36,37]. In fact, the inhibitory 
effect of PGE2 was significantly blunted but was not entirely abolished 
in murine platelets lacking IP [38]. Meanwhile, specific agonists for 
EP2 or EP4 potently inhibited aggregation of murine and human 
platelets [38-41]. These results suggest that selective activation of EP2 
or EP4 leads to inhibition of platelet aggregation. It is noteworthy that 
the inhibitory potency of an EP4 agonist was two rank orders higher 
than that of an EP2 agonist and was as high as that of an IP agonist in 
human platelets [38].

Conclusion
Anti-platelet agents having various mechanisms of action have 

been developed and used to prevent the recurrence of thrombotic 
diseases such as cerebral thrombosis and myocardial infarction, 
which have been major causes of death in developed countries [42,43]. 
The targets of these agents including aspirin, prasugrel and cilostazol 
are cyclooxygenase, ADP receptor P2Y12 and phosphodiesterase, 
respectively. Although an IP agonist (PGI2 or PGE1 analogue) and a 
TX synthase inhibitor have been used for anti-platelet therapy, there 
are still no anti-platelet agents targeting EPs. Previous studies showed 
roles of EP3 in thromboembolism [18,34,35] and higher inhibitory 
potency of an EP4 agonist in platelet aggregation [38], suggesting a 
potential of EP3 antagonists and EP4 agonists as novel anti-platelet 
agents [41,44,45].
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Prostanoid Type Subtype G-protein Main signal

PGD2

DP (DP1)  Gs cAMP ↑

CRTH2 (DP2)  Gi cAMP ↓

PGE2 EP

EP1 Gq PLC ↑

EP2 Gs cAMP ↑

EP3 Gi cAMP ↓

EP4 Gs cAMP ↑

PGF2α FP  Gq PLC ↑

PGI2 IP  Gs cAMP ↑

TXA2 TP  Gq PLC ↑

Table 1: Prostanoid receptor types and subtypes.

cAMP: Cyclic Adenosine Monophosphate; CRTH2: Chemoattractant Receptor-
Homologous Molecule Expressed on Th2 Cells; DP: Prostaglandin D2 Receptor; 
EP: Prostaglandin E2 Receptor; FP: Prostaglandin F2α Receptor; IP: Prostaglandin 
I2 receptor; PG: Prostaglandin; PLC: Phospholipase C; TP: Thromboxane A2 
Receptor; TX: Thromboxane.
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