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the molecular mechanism of the circadian expression of SNAIL. 

SMAD3 is a receptor-regulated SMAD in transforming 
growth factor-beta (TGF-β) signaling, which regulates cell growth, 
proliferation, apoptosis, and differentiation [10,11]. TGF-β induces 
differentiation of MSCs to vascular smooth muscle cells via nuclear 
translocation of SMAD3 [12]. Inhibition of SMAD2/3 signaling 
promotes enrichment of human embryonic-stem cell-derived MSCs 
[13]. These phenomena by SMAD3 may be driven by a circadian 
rhythmal though there are few reports on the circadian rhythm. 
It has been reported that SMAD3 binds to the DEC1 promoter 
and DEC1 in turn shows circadian expression in SCN, peripheral 
tissues, and hMSCs [4,5,14]. DEC1 induces differentiation of MSCs 
to chondrocytes, whereas it suppresses adipogenic differentiation 
[15].These results suggest that differentiation to chondrocytes and 
suppression of adipogenic differentiation in MSCs driven by DEC1 
may occur under the circadian rhythm and be regulated by SMAD3.
The research on circadian rhythms of both SMAD3 and DEC1 in 
MSCs may be interesting in future experiments. It has been reported 
that TGF-β activates DEC1 and SNAIL via the phosphorylation of 
SMAD3 [16]. The transcription factor SNAIL regulates epithelial 
markers E-cadherin and claudins and mesenchymal markers 
N-cadherin, vimentin, and α-SMA, inducing Epithelial-Mesenchymal 
Transition (EMT) [16,17]. A recent paper reported that SNAIL 
showed the circadian expression in breast cancer cells, inducing EMT 
[18]. Furthermore, SNAIL prevents the differentiation of MSCs to 
osteoblasts and adipocytes [19]. Thus, DEC1, SMAD3, and SNAIL 
show the circadian expression in normal cells, tumor cells, and 
MSCs to regulate the differentiation, cell growth, and EMT under the 
circadian rhythms.

Interestingly, there is no circadian expression of clock genes in 
Induced Pluripotent Stem (iPS) and Embryonic Stem (ES) cells, which 
are not differentiated [20,21]. They showed that circadian oscillation 
was observed by day 15 after differentiation in mouse. These results 
suggest that the circadian rhythm plays an important role in aging. It 
has been reported that disturbance of circadian rhythms may cause 
diseases, such as Alzheimer’s disease, diabetes, metabolic syndrome, 
and cancers [22-26]. It seems likely that circadian rhythms of older 
adults may cause more disorders than those of younger people. The 
number of MSCs is decreased with aging, which may delay wound 
healing and immune response. Therefore, it would be important 
to keep circadian rhythms of MSCs to prevent diseases. Detailed 
mechanisms why circadian rhythms are required after differentiation 
are still unclear. It is not well understood the precise function of 
DEC, SMAD3, and SNAIL in MSCs, iPS, and ES cells. There are 
many articles on the function of these molecules in differentiated cells 
without considering circadian rhythms, whereas few articles address 
the circadian rhythm of DEC [27]. It needs to consider the circadian 
expression as well as differentiation and proliferation of stem cells by 
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animals can be cultured in vitro and play important roles in the 
development of bone, cartilage, and adipocytes, bone repair, and 
skeletal regeneration [1,2]. It has been reported that MSCs are also 
associated with tumor microenvironment, indicating that MSCs have 
multiple functions in vivo [3]. However, it is not well understood 
whether MSCs have a circadian rhythm. We have reported the 
circadian expression of clock genes (CLOCK, BMAL, PER, CRY, 
DEC) in the Suprachiasmatic Nucleus (SCN), peripheral tissues of rat 
and mouse, and differentiated human and animal cells. In addition, we 
have recently demonstrated that clock genes and transcription factors 
SMAD3 and SNAIL show circadian expression in human MSCs [4]. 
This is a new finding on clock genes because the significance of clock 
genes in MSCs is not clear. Generally, the mechanism of circadian 
rhythms depends on the molecular negative feedback system by clock 
genes. CLOCK and BMAL1 heterodimer (CLOCK/BMAL1) binds to 
an E-box in the promoter of PER, CRY, or DEC, to promote their 
transcription and translation. Some PER, CRY, and DEC proteins are 
degraded by phosphorylation, ubiquitination, or SUMO lylation, and 
the remained proteins of a dimer of PER and CRY or DECs suppress 
CLOCK/BMAL1 transactivation [5-7]. This negative feedback system 
plays important roles in circadian regulation in normal and tumor 
cells [8,9]. We think that the molecular negative feedback system may 
be applied to MSCs because most of the clock genes show circadian 
expression in MSCs. Because MSCs do not completely initialize 
DNA and undifferentiation, we sought to examine the circadian 
rhythm of clock genes in MSCs by serum shock, which fully induced 
the expression of clock genes, SMAD3, and SNAIL. We examined 
whether CLOCK/BMAL1 affected SMAD3 transactivation because we 
found that the SMAD3 gene has E-boxes in its promoter. As a result, 
the SMAD3 promoter activity was induced by CLOCK/BMAL1 co-
transfection, whereas CLOCK/BMAL1 had little effect on the SNAIL 
transactivation. These results suggest that serum shock is suitable 
for observing the circadian rhythm in MSCs and that the circadian 
rhythm of SMAD3 may depend on CLOCK/BMAL1 transactivation 
through E-boxes. However, itis still unknown how the circadian 
expression of SNAIL is regulated. Further studies are needed to clarify 
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DEC, SMAD3, and SNAIL. In the future, it should be clarified how 
these molecules play important roles in circadian rhythms in stem 
cells.

Cancer stem cells are associated with resistance to anti-tumor 
drug and malignancy [28]. Also, DEC1, DEC2, PER1, CLOCK, and 
BMAL1 are associated with drug resistance and malignancy [29,30]. 
However, it is not still understood whether cancer stem cells show a 
circadian rhythm and a significant expression of clock genes. It would 
be interesting if cancer stem cells show circadian expression and the 
drug resistance is associated with clock genes.

DEC1, SMAD3, and SNAIL play important roles in differentiated 
cells, but the roles in iPS and ES cells are still unknown. A previous 
report showed that over expression of Oct3/4, c-Myc, Klf4, and 
Sox2 induced iPS cells from mouse fibroblasts [31]. DEC1 directly 
regulates c-Myc expression, cell proliferation, and apoptosis in 
normal and tumor cells [32,33]. It would be possible that DEC1 may 
play important roles in iPS cells, involving c-Myc expression. Future 
studies should clarify how these molecules are associated with the 
roles in ES and iPS cells.
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