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Abstract

Maternal High Fat Diets (HFDs) together with obesity represents a 
special problem that can lead to poor fetal development, resulting in harmful, 
persistent effects on offspring, including predisposition on obesity and its 
associated metabolic disorders as well as certain types of cancer. However, 
the mechanisms underpinning these programming effects induced by maternal 
HFDs and/or obesity remain poorly defined. Given the increasing number of 
obese women entering pregnancy and the current obesity epidemic, there is an 
urgent need to gain more insights into possible underlying mechanisms and to 
develop effective therapeutic strategies.
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Introduction
Obesity has become a significant threat for global public health, 

predisposing individuals to diseases such as type 2 Diabetes Mellitus 
(T2DM), Cardiovascular Disease (CVD), and certain types of cancer 
[1,2]. Surprisingly, the proportion of obese women of reproductive 
age is as high as 34% [3]. Increasing evidence from animal models 
have suggested that consumption of High Fat Diets (HFDs) during 
pregnancy exposes the fetus to an inflammatory environment 
during development. This inflammatory environment has long-
term consequences for offspring, predisposing or “programming” 
them to the development of metabolic disorders in adulthood 
independent of adult environmental factors [4-6]. In this context, a 
comprehensive understanding of the pathogenesis of maternal HFD-
driven metabolic disorders may help to reduce the disease burden 
worldwide. This review will elaborate on the precise pathology and 
etiology of metabolic disorders induced by maternal HFDs (Figure 1), 
and will provide a summary of potential treatments to manage these 
diseases and cancer.

Developmental programming by maternal HFDs
It is now recognized that maternal HFD consumption (even 

without maternal obesity) affects adversely fetal development, which 
has long-term adverse outcomes for the offspring health in later life 
even independent of postnatal nutrition [7]. In this section, we will 
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discuss how maternal HFD-induced obesity or maternal HFD per se 
affects the health of progeny. The ultimate aim is to identify potential 
targets, which may be amenable to prevention or early intervention in 
order to improve the health of this and future generations.

Obesity, insulin resistance, and diabetes
Maternal consumption of HFDs or maternal obesity is associated 

with the development of offspring adiposity and insulin resistance. 
Indeed, pups (babies) born to mothers with diabetes or consuming 
HFD during pregnancy and lactation are at increased risk of glucose 
intolerance and diabetes in adult life [8,9]. Further evidence to 
support this effect of maternal obesity comes from recent studies, in 
which increased fat mass was observed in adult wild-type progeny 
of obese and insulin resistant heterozygous leptin receptor-deficient 
mice, thus leading to the development of offspring adiposity [10,11]. 
Nonobese rats fed a HFD during pregnancy and suckling induced 
increased body fat mass and insulin resistance in the offspring, 
supporting the effect of maternal HFD per se [12-14]. Moreover, 
evidence from rodent models suggests that maternal HFD promotes 
the onset of T2DM in offspring [15]. 

Several mechanistic pathways, including alterations in the 
offspring muscle, may effectively impair glucose metabolism and 
result in the development of insulin resistance and diabetes in the 
offspring once they reach adulthood. Skeletal muscle, the principal 
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site responsible for insulin-stimulated utilization of glucose and 
Fatty Acids (FAs), is affected by maternal obesity. Fetal development 
of skeletal muscle implicates myogenesis, adipogenesis, and 
fibrogenesis, all of which are derived from Mesenchymal Stem Cells 
(MSCs) [16]. An increasing body of evidence demonstrated that in 
response to maternal obesity, fetal skeletal muscle exhibited increased 
intramuscular fat and reduced myogenesis, along with altered AMP-
activated Protein Kinase (AMPK) signaling and increased expression 
of inflammatory markers [17-19]. In addition, fetal skeletal muscle 
exhibited increased collagen content in response to maternal obesity, 
indicating increased fibrogenesis in fetal muscle [20]. All of these 
alterations in fetal skeletal muscle suggest that MSCs commitment 
shifts from myogenesis to adipogenesis and fibrogenesis, thus 
impairing skeletal muscle physiological functions, such as reduction 
in oxidative capacity [21] and muscle force [22]. Notably, this 
shift of MSCs commitment may be mediated by maternal obesity-
induced chronic inflammation through three major mechanisms: 
down regulation of wingless and int (WNT)/β-catenin, inhibition of 
AMPK signaling, and induction of epigenetic modifications [16,18]. 
As a result, elevated intramuscular fat and inflammatory signaling in 
offspring muscle may correlate with increases in adipogenesis and 
insulin resistance, predisposing offspring to later-life obesity and 
diabetes [19].

Intestinal diseases
Numerous evidence has linked maternal HFD consumption to 

intestinal development and health in offspring [23]. Maternal HFDs 
(60% energy from fat) for 8 weeks can elicit many structural and 
functional adaptations in the intestine of offspring, including increased 
intestinal permeability and gut inflammation as well as decreased 
villus to crypt ratio and goblet cells density in the ileum [24]. These 
alterations increase gene expression of proinflammatory cytokines 
in offspring intestine and may translate into increased susceptibility 
to Inflammatory Bowel Diseases (IBD) and other associated diseases 

in offspring. One recent study showed that maternal and postnatal 
HFDs accelerated the onset of ileitis in the distal ileum of offspring 
TNF∆ARE/WT mice, a genetically susceptible model for CD-like 
ileitis [25]. Similarly, using a dextran sulfate sodium-induced colitis 
mouse model, previous studies found that maternal consumption 
of HFDs (60% energy from fat) during gestation and lactation 
predisposes female offspring to a higher susceptibility to develop 
IBD and related inflammatory gut diseases [23]. The increased gut 
inflammation and colitis may be associated with elevated production 
of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and 
IL-17, reduced AMPK signaling, and amplified NF-κB signaling 
cascade in the offspring [23].

Although conflicting, the underlying mechanism for the impacts 
of maternal intake of a HFD on the intestinal development and 
function in offspring may involve the TGF-β signaling pathway and 
Jak-STAT signaling pathway [26]. Another possible mechanism may 
be perturbation of gut microbiome induced by a maternal HFD in 
gestation [27]. In response to a maternal HFD, shifts in gut microbial 
composition of the mother can be transferred to the offspring and 
influence its gut microbiome [27-29]. Moreover, alterations in the 
bacterial composition of offspring are associated with the maternal 
consumption of nutrients, especially a HFD, independent of maternal 
body mass [27,30-33]. Along this line, maternal HFD per se but not 
maternal obesity can restructure the offspring’s intestinal microbiome, 
which in turn influences intestinal maintenance of metabolic health 
[34]. Further investigations are warranted to confirm this hypothesis.

Cardiovascular disease
There is compelling evidence showing that a maternal HFD 

during pregnancy and/or suckling is related to increased risk of CVD 
in the offspring. For instance, in a study of 37,709 subjects, maternal 
obesity was related to elevated mortality from cardiovascular events 
in adult offspring [35]. Similar observations were made in animal 

Figure 1: Basic schematic outlining consequences of maternal high fat diets on the health and well-being of offspring.
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studies where using an integrated approach of determining both 
cardiac structure and molecular markers of cardiac hypertrophy, 
cardiac hypertrophy and dysfunction was observed in the offspring, 
even in the absence of any change in its body weight and adiposity 
at 12 weeks of age [36]. In addition, other studies reported that 
increased systolic blood pressure and endothelial dysfunction were 
observed in offsprings, who were exposed to maternal pre-pregnancy 
obesity/overweight [12,37-39]. Although poorly defined, mechanisms 
implicated in the programming of offspring CVD may include 
increased inflammation, oxidative stress, lipotoxicity, and epigenetics 
[40]. In support, elevated oxidative stress was observed in the offspring 
heart due to maternal obesity, accompanied by activation of p38 and 
JNK and downregulation of cardioprotective AMPK expression [41]. 
The combination of oxidative stress and inflammation may have 
an additive effect. Studies have shown that inflammation is a risk 
factor for cardiac fibrosis in fetal sheep offspring [20]. The roles of 
lipotoxicity and epigenetics in developing offspring CVD have also 
been described in numerous animal models. Interested readers can 
refer to [42-44] for further reading.

Liver disease
Non-Alcoholic Fatty Liver Disease (NAFLD) is regarded as 

the commonest cause of chronic liver disease. Developmental 
programming has been shown to be implicated in the pathogenesis 
of NAFLD and chronic liver disease. In support, after 3 months 
of exposure to maternal obesity and a postnatal obesogenic diet, 
offspring exhibited increased adiposity, hepatic Triglyceride (TG) 
content and upregulation of tumor necrosis factor (TNF)-α, IL-6, and 
alpha smooth muscle actin, indicative of liver injury and fibrosis [45]. 
Upon further investigation, the same study found a more-profound 
evidence of hepatosteatosis and a more-robust NAFLD phenotype 
with hepatic fibrosis at 12 months [45]. Intriguingly, offspring, which 
were born to lean dams but were suckled by obese dams, exhibited 
an exaggerated NAFLD phenotype, accompanied by elevated 
body weight, elevated concentrations of insulin, leptin, aspartate 
transaminase, IL-6, TNF-α, liver TGs, steatosis, hepatic fibrogenesis, 
renal norepinephrine, and liver α1-D plus β1-adrenoceptors, 
indicative of activation of Sympathetic Nervous System (SNS) [46]. 
SNS activation promotes fibrosis progression via the actions of 
norepinephrine [47]. These data suggest that exposure to maternal 
obesity during pregnancy and lactation programs development of 
a NAFLD phenotype. The mechanisms may involve alterations of 
hypothalamic appetite nuclei signaling by neonatal adipose tissue 
derived leptin and maternal breast milk [46], and disturbance of the 
hepatic innate immune system with increased Kupffer cell numbers 
and reduced NKT cell populations [45].

Brain health and function 
Maternal nutritional status during gestation exerts crucial roles in 

modulating fetal brain formation and development, with long-lasting 
consequences on its function, such as memory, learning, and brain 
senescence. When pregnant rats were exposed to a HFD beginning 
with gestational day 5, their fetuses displayed enhanced proliferation 
of neural progenitors (indicative of decreased neurogenesis) within 
the hypothalamus at embryonic day 14 [48]. In agreement, other lines 
of evidence demonstrated that long-lasting (until postnatal day P70) 
decreased neurogenesis in the dentate gyrus was observed in pups 
from mothers fed a HFD (57.5% fat with mainly lard) for 6 weeks 

prior to and during gestation as well as during lactation [49]. Neonatal 
brain development may also be affected in suckling pups exposed to 
a maternal HFD [50]. In addition, maternal exposure to a HFD (60% 
calories from fat) for 10 weeks prior to and during gestation altered 
fetal hippocampal development at embryonic day 17, as shown by 
region-specific alterations in proliferation of neural precursors, 
reduced apoptosis, and by reduced neuronal differentiation within 
the dentate gyrus [51]. Altogether, maternal exposure to a HFD can 
affect prenatal and postnatal brain development.

Several mechanisms may be responsible for adverse effects of 
a maternal HFD on brain. Peroxidized lipid accumulation in the 
dentate gyrus may be associated with alterations in hippocampal 
neurogenesis [49]. Decreased levels of brain-derived neurotrophic 
factor in the cortex and hippocampus may be related to reduced 
hippocampal spatial learning performance and to alterations in 
discrimination reversal [52-54]. Another hypothesized mechanism 
implicated in the dietary modulation of hippocampal development 
is associated with the leptin receptor [55], which plays a key role 
in facilitating memory and learning [56]. The expression of leptin 
receptor in the hypothalamus and liver is reduced in response to 
obesity [57]. 

Pancreatic cancer
The prevalence of pancreatic cancer in developed countries is 

rising at an alarming rate and may parallel rising rates of obesity 
and dysmetabolism [58]. Intriguingly, the phenomenal rises in the 
rates of pancreatic cancer may be attributed to transgenerational 
amplification of obesity through epigenetic mechanisms [59], a 
possible link being Non-Alcoholic Fatty Pancreas Disease (NAFPD) 
[60]. In parallel with increases in body weight, TG content in pancreas 
tissue was dramatically elevated in offspring of maternal obesity. 
Meanwhile, pancreatic expression of fibrogenic markers TGF-β 
and collagen type 1-α2 genes was greatly upregulated in offspring of 
maternal obesity, accompanied by increases in the response of night-
time systolic blood pressure and systolic blood pressure to restraint. 
Therefore, a fatty pancreas with induced fibrogenesis developed in 
offspring when exposed to an obesogenic environment, indicating 
a dysmetabolic and NAFPD phenotype [60]. Therefore, maternal 
obesity-induced pancreatic cancer in offspring may result from 
pancreatic fat accumulation and fibrosis in offspring.

Breast cancer
Exposure (in utero and lactation) to maternal HFD predisposed 

female progeny to elevated risk for breast cancer [61]. Previous 
studies found that maternal consumption of HFD (45% kcal from 
fat), beginning at weaning (postnatal day 21) and maintained on the 
same diet 12 weeks prior to mating and throughout pregnancy and 
lactation, alters mother’s metabolism and systemic oxidative status, 
leading to systemic alterations in female offspring in the absence 
of dramatic weight gains. On one hand, maternal HFD elevated 
IL-6 levels and oxidative stress status, both of which could directly 
contribute to the development of breast cancer. In addition, maternal 
HFD promoted hyperinsulinemia and suppression of PTEN (a tumor 
suppressor) expression/function, both of which increased breast 
cancer risk via upregulation of Insulin Receptor Substrate-1 (IRS-
1) expression [61]. Other studies also demonstrated increased risk 
for breast cancer in the offspring of dams-fed HFD [62]. These data 
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have important implications for developing novel strategies for the 
prevention of maternal HFD-induced breast cancer.

Potential treatment options
Given the close relationship between maternal HFDs and the 

offspring health, it is of great importance for obese mothers to eat 
balanced meals and to reduce their body weight. In this regard, diet 
reversal from HFDs to control diets during pregnancy resulted in 
improvements in fetal hepatic triglycerides, normalization of the 
melanocortin levels, and partial normalization of the expression 
of gluconeogenic enzymes [43]. Similar results were obtained in 
male offspring of obese rats, in which dietary intervention prior to 
pregnancy reversed metabolic programming of offspring [63]. In 
addition, interventions with exendin-4, folic acid, and leptin in the 
early phases of developmental plasticity have been reported to alleviate 
or reverse some of the effects related to developmental programming 
[64-66]. In addition, exercise exerts beneficial effects in obesity-prone 
offspring of undernourished mothers [67,68]. In support, children 
had reduced birth weight and exhibited improved metabolic profiles 
with greater insulin sensitivity and improved lipid profile when their 
mothers reduced their body weight (36 ± 1.8%) [69]. 

Conclusions and Perspectives for Future 
Studies

Overall, many animal and human studies have indicated that 
maternal HFDs and/or obesity negatively affect offspring health, 
which has profound implications for public health policy. Based upon 
evidence to date, we suggest that intake of SFA should be avoided, 
and clear guidelines for fat intake (just like trace elements iron and 
folic acid) should be established for mothers in pregnancy, thus 
improving body health status. However, lots of questions remained 
to be addressed. For instance, when is the appropriate time for obese 
woman to lose weight when planning pregnancy, and how should 
they manage their weight when pregnant? In addition, further studies 
are urgently warranted to identify appropriate interventions to reduce 
the risks of these complications in the offspring.
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