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Abstract

L-arginine (ARG) has gained popularity as a dietary supplement in the last 
decade after its role as the endogenous substrate for endothelial nitric oxide 
synthase (eNOS) was identified. Of concern, the therapeutic benefits of ARG, 
often clearly observed during short-term dosing, are not evident after long-term 
use. Initial metabolic studies in cells show ARG tolerance in endothelial cells 
to be mediated by eNOS down-regulation, secondary to oxidative stress and 
glucose accumulation. Modulation in ARG transport mechanism (via cationic 
amino acid transporters), eNOS cofactor (tetrahydrobiopterin), arginase, as well 
as the metabolic intermediate (Nw-hydroxyl ARG) formed during ARG utilization 
by eNOS have all shown promising potential towards the development of ARG 
tolerance. While asymmetric-dimethyl-L-arginine is a potent inhibitor of eNOS 
and competitive analog of ARG, it has been found not to be responsible in 
developing ARG tolerance under physiological or diseased conditions. AMP-
activated protein kinase has been recently identified as the fundamental 
modulator of short-term and long-term ARG responses in cells. Translatability 
of these findings in vivo will prove beneficial and crucial for the design of safe 
and effective use of ARG as alternative and complementary medicine.
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Introduction
L-arginine (ARG) is an important conditionally essential amino 

acid that plays an important role not only in the mere removal of 
ammonia, but is also involved in the regulation of numerous 
physiological processes [1]. Endogenously, ARG is synthesized 
as a by-product of glutamine, glutamate and proline catabolism 
[2]. L-Citrulline (CIT) reabsorption by the kidney is also known 
to be involved in the formation of ARG [3]. Since ARG is not an 
essential amino acid, and is usually generated in sufficient amounts 
endogenously, initial reports suggested the real necessity for ARG 
supplementation only during conditions of malnutrition or for 
elderly patients who lack sufficient production of ARG.

However, the use of ARG gained its popularity as a dietary 
supplement in the last decade after its role as the endogenous 
substrate for endothelial nitric oxide synthase (eNOS) was identified 
[4]. The use of ARG, in as many as 44 diseases and diagnoses, were 
discussed and categorized (in Medlineplus) according to the strength 
of scientific evidence. Examples of conditions that have shown 
improvement with ARG treatment include pituitary disorders, 
coronary artery disease, critical illness, heart failure, migraine 
headache, peripheral vascular disease/claudication, diabetes, erectile 
dysfunction, myocardial infarction, and pre-eclampsia, among others 
[5]. Benefits of supplementation were also seen in patients with stable 
angina pectoris [6,7], and those with congestive heart failure [8,9], 
whereby their exercise tolerance, and prolonged exercise duration, 
respectively were observed. In addition, ARG has been found to 
improve immunity [10-12], in patients under critical care[13,14] 
and in sickle cell disease[15,16]. Thus, the range of diseases that 
are benefited by ARG supplementation is quite wide, and is also 
commercially endorsed by Nobel Laureates. 
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Of concern, the therapeutic beneficial effects of ARG that are 
clearly observed during short-term studies are not evident after long-
term use. Wilson et al. [17] showed, in the “Nitric Oxide Peripheral 
Arterial Insufficiency” (NO-PAIN) trial that ARG supplementation 
(3 g/d) for 6 months in 133 subjects, “did not increase NO synthesis or 
improve vascular reactivity, and the expected placebo effect observed 
in studies of functional capacity was attenuated in the ARG-treated 
group”. These authors characterized the findings as indications of 
“ARG tolerance”. A 2005 report by Bernarz et al., [9] showed that 
ARG oral supplementation at 9 g/day for 1 month in 792 patients 
with acute myocardial infarction resulted in marginal benefits in the 
reduction of major clinical events [9].  In the follow-up Vascular 
Interaction With Age (VINTAGE) trial [18] in myocardial infarction 
patients, a total of 153 patients after myocardial infarction were 
randomly assigned ARG (goal dose of 3 g) or matching placebos for 
6 months. The results showed no improvement in vascular stiffness 
measurements or ejection fraction. Strikingly, 6 patients in the 
ARG group died during the study period versus none in the placebo 
group. The authors therefore concluded that ARG “may be associated 
with high post-infarct mortality”, and stated that ARG “should not 
be recommended following acute myocardial infarction”. Animal 
studies also revealed that chronic use of ARG may be harmful. Chen 
et al.[19] showed that ARG fed to apoE knockout mice (25g/L for 
16-24 weeks) on a western diet did not affect lesion formation but 
“it negates the protective effect of inducible NOS gene deficiency”. 
However, commercial available form of ARG, such as N.O.XPLODE, 
NiteWorks and ARG extreme; are being used by body builders 
without medical supervision.

The development of this ARG tolerance (and possible toxicity) 
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upon chronic dosing represents a major hindrance for the use 
of this important amino acid to benefit patients. Because of the 
extensive involvement of NOS in many physiological systems, a wide 
variety of disease states are expected to benefit from increased NO 
bioavailability through increased ARG supply. Thus, if the metabolic 
events causing ARG tolerance and toxicity can be understood, 
and suitable alternative approaches can be devised to circumvent 
these effects, the beneficial effects of ARG supplementation can be 
extended to benefit patients in whom short-term therapeutic effects 
have already been demonstrated.

Analyses and Interpretation
ARG tolerance events

While studies have identified the potential development of 
tolerance during long-term or continuous ARG supplementation, 
better understanding of the biochemical and pharmacological 
consequences of long-term ARG supplementation will greatly help 
to inform the design and evaluation of future clinical trials regarding 
ARG. A recent study by Mohan et al., has shown ARG tolerance in 
endothelial cells to be mediated by eNOS down-regulation, secondary 
to oxidative stress and glucose accumulation [20]. This study is 
considered highly significant on several counts. First, the study has led 
to the development of a cellular model for the study of ARG tolerance 
that has allowed experimental manipulations for mechanistic studies 
to be carried out without the need for long-term in vivo studies, 
which are otherwise not possible in animal models and human trials. 
Second, the study demonstrated, for the first time, that continuous 
ARG exposure leads to eNOS down-regulation, thus providing a 
direct mechanism to explain ARG tolerance, and the endothelial 
dysfunction that accompanies this phenomenon. Third, the study 
also showed that ARG tolerance is accompanied by increased glucose 
accumulation and oxidative stress. These results, when applicable in 
vivo, would have tremendous impact in the consideration of ARG 
supplementation for the large number of patients with cardiovascular 
and metabolic diseases. 

However, it is not known whether the major three effects observed 
during ARG tolerance, viz., superoxide (O2

•–) production, eNOS 
down-regulation and increased cellular glucose concentration, are 
connected with each other, and how interference with one factor may 
affect the others. If we find that these events are sequential to each 
other, identification of the initiating event would provide insights 
concerning how these events can be prevented. Additionally, to what 
extent eNOS uses ARG supplied exogenously versus those from 
the endogenous stores has not been determined conclusively. One 
possible mechanism that has been suggested in better understanding 
exogenous versus endogenous ARG utilization has linked it to ARG 
transport pathway. 

The cellular transport of ARG by itself is complex [21,22] and 
involves four cationic amino acid transporters (CAT 1-4) of the y+ 
carrier system. However, in endothelial cells, 70-95% of ARG uptake 
has been attributed to the CAT-1 [23]. Suppression of the CAT-
1 mediated transport of extracellular ARG strongly depressed the 
endothelial cell NO response to a wide range of physiological stimuli. 
Furthermore, modulation in tetrahydrobiopterin (BH4, the cofactor 
for eNOS) [5], asymmetric dimethyl arginine (ADMA), Nw-hydroxyl-
ARG (NOHA) and arginase have all been suggested as potential 

factors involved in tolerance development during continuous ARG 
supplementation. Hence, an in-depth characterization of these 
metabolic pathways becomes crucial to gain sufficient insights of the 
molecular basis for such tolerance development.

Role of ADMA

ADMA is a naturally occurring analog of ARG and is usually 
derived during proteolysis [24-26]. Clinical evidences have suggested 
ADMA in the serum as a novel cardiovascular risk factor and ADMA 
has also been associated with impaired endothelial function in 
humans [27,28]. Patients of hypertension [29], hyperlipidemia [30], 
hyperhomocysteinemia [31], coronary artery disease [32], peripheral 
arterial occlusive disease [33], congestive heart failure [34], stroke 
[35], pulmonary hypertension [36], and end-stage renal disease [37] 
have all shown elevation in their plasma ADMA concentrations. 
Studies have demonstrated that ADMA induces oxidative stress in 
vascular tissues. Veresh et al., [38] suggested ADMA to increase O2

•– 
production by angiotensin II-NADPH oxidase pathway, thereby 
impairing NO mediated arteriolar function. However, Antoniades et 
al., [39] found no correlation between elevated serum ADMA and 
NADPH-stimulated vascular O2

•–. Thus the exact role of NADPH 
oxidase in mediating ADMA-induced vascular O2

•– accumulation is 
still unclear. 

While it is undisputable that ADMA is a potent inhibitor of 
eNOS (Ki = 0.9 µM), its circulating concentration of about 0.5 µM 
in healthy subjects is too low [23] to exert a significant inhibition of 
NOS. However, ARG has been reported to inhibit dimethylarginine 
dimethylaminohydrolase [40], thus cellular ADMA concentration 
could potentially increase during ARG supplementation.  On the 
other hand, ARG trans-stimulates the efflux of ADMA from cells 
through CAT 1-4, potentially reducing intracellular ADMA load 
[41]. Recent studies have concluded that the modest changes in 
ADMA concentration observed as a result of ARG exposure, still 
couldn’t explain the ARG tolerance phenomenon, unless substantial 
intracellular compartmentalization of ADMA takes place [41]. 
We are unaware of any literature report suggesting specific cellular 
compartments for ADMA. Thus, the general consensus is that this 
pathway is less-likely to be important in developing tolerance during 
continuous ARG exposure. However evidence for ADMA-induced 
eNOS uncoupling and involvement of BH4 are presented [41].

Role of eNOS cofactor: BH4

As a redox sensitive NOS cofactor, BH4 is required for normal 
NO synthesis by all NOS isoforms. While fully reduced BH4 supports 
NOS catalysis, the oxidized pterin species of BH4 (for example; 
7,8-dihydrobiopterin, BH2) are catalytically non-functional [42-44].  
Depletion in BH4 level have resulted in eNOS uncoupling from ARG, 
as well as in causing endothelial dysfunction via product switching 
from NO to O2

•– [5], which were restored during subsequent dosing 
with BH4 in chronic smokers [45] and patients with diabetes [46], 
ischemia-reperfusion injury [47], or hypercholesterolemia [48]. 
Besides supplementing BH4 to improve endothelial function, exposure 
to antioxidants such as Glutathione, vitamin C or E, that are capable 
of providing chemical stabilization to BH4 (thereby preventing BH4 
oxidation) increased eNOS efficacy and NO synthesis [49,50]. These 
studies provide the initial evidences to suggest oxidation of BH4 to be 
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the basis for eNOS uncoupling and vascular dysfunction during ARG 
supplementation. The metabolically more critical literature finding 
was the ability of BH2 to bind to eNOS with greater avidity than 
BH4 alone [51], as well as the importance in maintaining the ratio 
between BH2 to BH4 (rather than maintaining the level of BH4 alone) 
for proper vascular function and NO generation during continuous 
ARG supplementation [5]. Thus, both the level of BH4 and the ratio 
of BH2 to BH4 are to be considered equally important determinants 
during continuous ARG treatments.

Role of Arginase and NOHA

Although the arginase Km for the utilization of ARG is ~ 1000 
fold greater than those of NOSs, the Vmax of the arginase is ~1000 
fold higher than that of the NOS enzymes [52]. So, in principle, 
the arginase should be able to compete with the NOS enzymes for 
ARG, thereby limiting NO production. Arginase has been shown 
to contribute to endothelial oxidative stress [53] and its inhibition 
restores NOS coupling and reverses endothelial dysfunction [54]. So, 
the interaction among ARG, O2

•– and arginase needs to be further 
explored. 

Studies of the competitive nature between NOS and arginase in 
response to inflammatory cytokines [55,56], showed a substantial 
increase in the amount of the intermediate NOHA. NOHA has been 
reported to accumulate in the culture medium up to 20-30% of the 
amount of NO generated [57,58], and is a potent inhibitor of Arginase 
(with a Ki in the range of 40-150 µM). Additionally NOHA has an 
NO independent mechanism leading to cytostasis and/or apoptosis 
by inhibiting synthesis of polyamines (by inhibiting ornithine 
decarboxylase) [59]. 

Since polyamine are formed from ARG and L-Ornithine via 
Arginase and ornithine decarboxylase (ODC) [60], an inhibition of 
both arginase activity and ODC by NOHA, can potentially affect 
L-Ornithine level. Fluctuation in L-Ornithine is known to inhibit NOS 
mediated NOHA generation (and thus, subsequent NO generation) 
[61]. Based on these literature evidences, it is logical to hypothesize 
that short-term beneficial effects of ARG supplementation is 
predominantly dominated by NOHA’s influence on inhibiting 
arginase and polyamines, while a continuous supplementation of 
ARG can allow fluctuation in L-Ornithine, that in turn inhibits NOS 
mediated NOHA generation, thereby favoring tolerance and possible 
toxicity (via arginase activation). However additional validation is 
required at this instance to better delineate NOHA response towards 
ARG tolerance.

Metabolic switch for ARG tolerance : AMP-activated 
protein kinases (AMPK)

While it would be metabolically interesting to validate the potential 
factors involved in tolerance development during continuous ARG 
supplementation, the fundamental question of what drives the 
cascade of events needs to be better addressed. Not much progress 
has been reached until recently, where AMPK has been suggested as 
the potential modulator of the events associated with ARG tolerance 
(and potential toxicity) [62,63]. 

AMPK plays a significant role in energy-sensing/ signaling 
system utilized by cells to detect and respond to changes in energy 
levels [64]. The NO generated by eNOS via ARG utilization, is 

known to be required for the initial activation of AMPK [65], 
possibly via calmodulin dependent protein kinase kinase [66,67] 
or other mechanistic pathways [68,69]. eNOS knockdown in mice, 
or shear stress in endothelial cells [70] suppressed AMPK activity, 
emphasizing the importance of endogenous NO in AMPK activation 
and subsequent metabolism of energy substrates. 

When AMPK is activated, processes of ATP-consumption, such 
as lipogenesis or gluconeogenesis are switched off, whereas ATP-
producing pathways like fatty acid and glucose oxidation are switched 
on. AMPK activation also increases NO synthesis by eNOS under 
various physiological and pathological conditions [71,72]. While 
NO controls AMPK function through activation of guanylyl cyclase; 
peroxynitrite that is formed by the reaction between NO and O2

•–; can 
also impose its regulation on AMPK activation by impairing guanylyl 
cyclase [73-75]. The recent AMPK modulation study suggests that 
ARG mediated short-term therapeutic benefits to be initiated via the 
activation of AMPK, which stimulates downstream NO release by 
maintaining eNOS activity and allowing glucose to accumulate only 
via cellular transport [62]. The dysfunction in AMPK enzyme activity 
affected eNOS function, decreased glucose uptake from medium, 
increased cellular glucose synthesis and oxidative stress. All of these 
events seen during AMPK dysfunction are concomitant with those 
reported to occur during continuous ARG supplementation [20]. 

ARG versus CIT response
An alternative problem-solving approach to avoid ARG tolerance 

development would be to indirectly deliver ARG to eNOS for NO 
production. The CIT to ARG recycling pathway is well known [52], and 
CIT supplementation has been found to be beneficial to cardiovascular 
functions [23,40,76-80], although no long-term tolerance and toxicity 
studies about CIT supplementation have appeared. Further reduction 
in arginase toxicity with CIT has been recently reported, however, 
the exact mechanism involved is still unclear [81]. In essence, the use 
of CIT offers a safe and effective alternative to circumvent the ARG 
tolerance sparing effects, and to extend the beneficial effects of ARG 
supplementation among patients in whom short-term therapeutic 
effects have already been demonstrated.

Conclusion and future direction
In this review on ARG tolerance development, we have identified 

some of the potential metabolic factors that are crucial in better 
delineating this phenomenon. This review has shown evidence to 
support ADMA to be not a crucial factor in the development of ARG 
tolerance. AMPK has been identified as the modulating switch for 
determining ARG mediated beneficial versus deleterious events. 
Further detail metabolic studies are warranted to better understand 
the pharmacological events involving Arginase, NOHA, BH4/BH2 
and CAT systems during AMPK regulation on continuous ARG 
supplementation, to better inform the design and evaluation of future 
ARG clinical trials. The mechanistic basis for the use of CIT as a safe 
and effective alternative to circumvent the ARG tolerance-sparing 
effects needs to be further explored.
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