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Abstract

Computational models have become an important tool in the study of the 
nervous system and are commonly used in the simulation of specific aspects of 
physiology and pathology at various levels in addition to teaching neuroscience; 
however, their correspondence to complex biological reality of nervous system 
remains under question. The large number of variables and factors affecting 
the structure and function of the nervous system makes it almost impossible 
for them to be considered in a single model. Therefore, computational models, 
mostly consider few specific biological variables leading to their limited 
applicability. This paper provides some of the fundamental characteristics of the 
nervous system, including different cell types and their ratio, neurotransmitters 
and their receptors, synaptic plasticity and gene expressions to illustrate the gap 
between modeling studies and biological reality. Nevertheless, computational 
models have their own advantages that make them almost an irreplaceable 
tool in modern neuroscience. Specially, the integrative power of these models 
in unifying biological observations ranging from sub-cellular to the whole 
organism, have been attracting a lot of interest. Within this context, we critically 
review the biological correspondence of computational models and suggest 
multi-level modeling as an effective approach for enhancing the applicability of 
computational modeling in neuroscience.

Keywords: Computational Neuroscience; Neural Dynamics; Neurobiological 
Plausibility; Abstraction Level; Multilevel Modeling

the various levels of the hierarchy from single neuron to whole brain 
which is a common problem in models that are currently available

For this purpose, the remainder of the paper is divided into two 
main parts. First, some basic features of the nervous system such 
as cell types and their physiological aspects, synaptic plasticity and 
genetic considerations are discussed. Specifically, the gap between 
biological reality and modeling studies is explained; however, since 
this is not an exhaustive review, for each feature some examples 
of modeling studies pointing to their deficiency are provided for 
illustrative purposes. In the second part, from a modeling perspective, 
two main levels of modeling and their advantages and disadvantages 
are discussed and it is also explained how the multi-level approach 
may bring the advantages of both abstraction levels together in a 
hierarchical framework. Additionally, general requirements of any 
modeling study are suggested. The paper ends providing a general 
perspective based on the material presented in these two sections.

A Biological Perspective
There are several studies that have modeled neuronal function 

from various aspects and aimed to better predict the neuronal behavior 
under diverse conditions that would mimic a real neuron. However, 
while most of the investigators assert that their model is technically 
better than the others, these models have their own limitations as 
they consider some specific aspects of neuronal function [11]. To 
illustrate further, every modeling study usually focuses on one, two 
or few main variables and considers the effect of their variations 
on neuronal function as a change in the behavior of whole neuron 

Introduction
Computer modeling of neuronal, glial, synaptic and network 

function has become increasingly popular during the last few 
decades and has greatly contributed to the understanding of various 
aspects of the nervous system in health and disease [1-3]. Models 
of neurons and glia exist that not only simulate selected output of 
neuronal function, but also predict cell function in different states. 
They also contribute in teaching various fields of neuroscience such 
as computational neuroscience, cognitive neuroscience, neural and 
cortical microcircuits, circuits and networks [4-6]. However, given 
the complexity of the nervous system, these models, especially the 
neuronal models have inherent deficiencies and are often criticized 
for their oversimplification and limited applicability [7-13]. 

This paper provides a critical overview and assessment of some 
of the inherent limitations of modeling studies of the nervous system 
from neurobiology perspective. After considering these limitations, 
a multi-level approach is suggested for bringing these models near 
to what exists in reality at cellular, receptor, genetic, molecular 
and network level. Additionally, for optimizing the effectiveness 
and application of these computational models, integration of 
experimental observations at different levels from cell to whole 
organism is suggested. As we will discuss, this across-scale models 
are not possible unless scientists from different fields and relevant 
disciplines including neurophysiologists and computational 
neuroscientists work in close collaboration. This will fill the gaps 
created by the lack of knowledge, diversity and can accurately connect 
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or network of neurons and interprets relevant data as such. As we 
will discuss later, the possible number of variables that determine 
neuronal behavior under physiological and pathological conditions is 
too large and no single model can employ all these variables and their 
interactions. Such a model would require a huge computational effort 
as well as diversity of multi-disciplinary expertise to be constructed 
and analyzed. Therefore, from neuroscience view, the interpretation 
of the results of any such modeling study, especially when making 
general assessment, requires caution and has limited application. 

In this section, some of the main physiological characteristics 
of the nervous system that are usually not addressed adequately 
in modeling studies, are investigated in order to point out the gap 
between complex biological reality and computational models 
and therefore the limited applicability of these models (Figure 1). 
To address this important problem, three specific considerations 
regarding the nervous system, namely, different cell types and their 
ratio, synapses and neurotransmitters and genes will be presented 
and few related modeling studies will be discussed. 

The nervous system is a huge complex network comprising of 
different cells, with different shapes and sizes that play diverse roles in 
its function. The human brain is unique in its several characteristics 
and comprises of over 86 billion neurons with approximately the same 
number of non-neuronal cells, called glia [14-16]. These neurons are 
connected to each other through 100 to 500 trillion synapses [17]. 
Other primate’s brain, such as owl monkey, capuchin monkey, 
chimpanzee and gorilla also include billions to tens of billions of 
neurons [15,18]. Modeling studies have an obvious limitation as data 
from individual cells and also different cell types of human brain is 
not available due to experimental limitations (even if it was available, 
we would not know how to process and interpret this huge amount of 

data). On the other hand, in large network models of different brain 
areas, these studies drastically downscale the size of the network 
due to computational limitations which may affect the reliability of 
the results of such models. For example, the downscaling has been 
mentioned to be of great importance in interpreting the results of 
computational models of neurogenesis and its role in learning and 
memory as the size of the network (number of computational units) 
has a major effect on network capacity in learning and memory [19]. 

Additionally, models of the nervous system usually consider a 
single type of cell or interactions of two or three relevant types of 
cells. However, as mentioned earlier, in reality, the nervous system 
comprised of extensive and complex networks of various types 
of neurons, interneurons and glial cells. Especially, in this regard, 
considering the active role of astroglia in various neuronal functions 
and synaptic plasticity, neuronal models without considering neuron-
glia interactions pose major limitations in understanding the neuro-
biological facts at the cellular level [1,20,21]. Interestingly, employing 
astrocytes, even in Artificial Neural Network, or Artificial Neuron-
Glia Networks, improves the performance of the network [21].

There are interspecies variations of neuronal and glial number, 
function and structure [22]. For instance, the ratio of cells, such as 
neuron verses glia, differs in a high proportion across species [23]. 
In Caenorhabditis elegans there are 302 neurons and only 56 glial 
and associated support cells [24], while in leech, a typical ganglion 
is composed of 25 to 30 neurons and only one astrocyte [23]. In 
addition, astrocytes and neurons are represented in a ratio of 1:3 
in the cortex of lower mammals such as rats and mice while in the 
human cerebral cortex, there are 1.4 astrocytes for every neuron [25]. 
Modeling studies usually fail to address these differences which are of 
great importance due to lack of a systematic approach for correlating 

Figure 1: A schematic diagram of some of the important aspects of the nervous system that have been considered in modeling, however not addressed properly 
including different cell types (neuronal and glial) and their numbers in different areas of the brain, diversity of neurotransmitters and their transporters and receptors 
and various gene expressions in neurons.
Cells: Numbers, Types, and Ratios.
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data from different species [13]. Additionally, the ratio of different 
cell types and their connections are different in, and specific to 
various regions of the brain. In the human brain, the glia to neuron 
ratio in subcortical nuclei can be as high as 17:1 in the thalamus 
[26] compared to the relatively small combined number of glial cells 
reported for the cerebral [27] and cerebellar cortices [28]. These 
differences in the ratio of neuron and glia in different regions of the 
brain have also been reported in animals such as mice [29] and rats 
[30]. However, modeling studies sometimes do not specify the part or 
specific region of the brain to which the model with the fixed ratios 
applies. For instance, some studies proposed a model for neuron-
astrocyte network [31,32], however, failed to explain which part of 
human brain they were modeled, although the ratio of Neuron verses 
Glia is different in various regions of brain [33].

Synapses, Neurotransmitters and Receptors
Neural networks are complex structures including a large 

number of synapses. For example, a CA1 pyramidal cell in rat 
hippocampus receives around 30,000 excitatory and 1,700 inhibitory 
inputs [34] with different ratios of excitatory versus inhibitory 
synapses in different areas of soma, axon and dendrites [35]. These 
structural differences are thought to affect the functional aspects 
of pyramidal neurons, especially the synaptic integration [35]. 
Moreover, the number of these connections is not invariant and 
changes due to neural branching and synaptogenesis [36-39]. Also, 
variable is the strength of these synapses because of variations in 
the level of plasticity at individual synapses. Various mechanisms 
and types of synaptic plasticity have been thoroughly studied such 
as long-term and short-term potentiation and depression [40,41]. 
Moreover, the activity dependence of synapses, either depressed or 
facilitated during continuous activity, has been shown to play an 
important role in functionality of various neuronal microcircuits, 
especially in neocortex and spinal cord. This activity dependence is 
itself subjected to modulation by some neurotransmitters such as 
serotonin by a process called meta-modulation [42]. The structural 
changes in synapses have also been investigated through the 
morphological changes and reorganization of postsynaptic density 
(PD), the localized area under the postsynaptic membrane containing 
several proteins. It has been suggested that the reorganization of PD 
is the underlying cause for long-term potentiation and depression 
and may even have some role in synaptogenesis [43,44]. Different 
roles of PD proteins in the structure and function of synapses have 
resulted in linking various neurological disorders such as autism and 
schizophrenia to their mutations and dysfunctions [44,45]. Moreover, 
neurons can also make synapses upon themselves, called autapse. 
These feedback circuits that are, for example, present in about 80% 
of cortical pyramidal neurons, have been reported to play some role 
in maintaining activity and controlling the precision of spike timing 
in neurons [46,47]. Several modeling studies have investigated the 
function of autapse in neuronal activity and have shown its role in 
information regulation and firing pattern transition [47,48].

These variations in number, structural complexity and strength 
of synapses are thought to be the underlying mechanisms of learning 
and memory [39-41,49]. All these factors added to the already existing 
complexity of modeling of neural networks. Application of random 
variables for connections within the models of neural network has 

been employed to handle the variations in numbers and plasticity of 
synapses [2], however, experimental results of neuroscience research 
show that the topology of brain network is much more complex 
and statistically far from random networks [50]. Furthermore, these 
network models of different regions of the brain not only include a 
fixed number of synapses, but also employ a single phenomenological 
model -black box model -of a specific mechanism for synaptic 
plasticity (usually Spike-Time-Dependent-Plasticity (STDP)) for the 
whole network [51-53]. However, neurophysiological observations 
clearly show the existence of several types of plasticity mechanisms 
even within different layers of the same region of the brain [54] 
which leads to limited applicability of STDP when employed as a 
unifying framework for the synaptic plasticity [55]. Moreover, the 
widespread classic STDP model, including its simplified dependence 
on timing of spikes in a pair of pre and post synaptic neurons fails 
to explain a wide range of experimental observations related to the 
dependence of plasticity on frequency, voltage, dendritic location, 
etc. [56]. At the same time, due to the lack of needed technology 
for detailed monitoring of molecular basis for synaptic plasticity, 
some biophysical models have been constructed for a specific type 
of synaptic plasticity such as short-term plasticity [57], N-Methyl-D-
Aspartate (NMDA) receptor dependent plasticity [58], etc., in order 
to provide some insight into underlying interactions of different 
compartments within the synapses. However, these limited though 
realistic biophysical models have not been used in network models of 
brain function because of the huge amount of computational effort 
they impose. 

Regarding chemical synapses, the diversity of neurotransmitters 
and their receptor subtypes involved in various aspects of neuronal 
function is very high. Specific populations of neurons synthesize 
particular neurotransmitter and express its receptors. So far more 
than one hundred molecules have been identified that function as 
neurotransmitters in the human brain. These neurotransmitters can 
be classified based on various criteria such as size - small-molecule 
neurotransmitters and neuropeptides, or kind of post-synaptic effect 
-excitatory and inhibitory [59]. Furthermore, each neurotransmitter 
is usually associated with several ionotropic and/or metabotropic 
receptors, resulting in an even greater number of receptors within 
the brain [60]. For example: Dopaminergic neurons synthesize 
dopamine and express their receptors while there are five subtypes 
of dopamine receptors in mammals with different excitatory and/or 
inhibitory effects [61]. Neurotransmitter serotonin has more than 
fourteen types of receptors present in the central nervous system 
[62]. Moreover, every neurotransmitter has its own transporter 
system, inactivation and reuptake mechanism that is specific to it and 
influences its functional aspect. For instance, glutamate, as the most 
prominent and main excitatory neurotransmitter of the human brain 
is synthesized (by two different mechanisms), transported to synaptic 
cleft (by at least three different transporters) and then removed from 
the synaptic cleft (by five different transporters) in a series of events 
called glutamate-glutamine cycle [59]. The same process of synthesis, 
transportation and reuptake is different for Gamma-Aminobutyric 
Acid (GABA) as the main inhibitory neurotransmitter of brain 
[59]. Although a lot of modeling studies have included different 
neurotransmitters and their receptors [58,63-65], these studies 
usually do not consider the various aspects of the neurotransmission 
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such as different types of neurotransmitters and different transporter 
systems and receptor subtypes for each neurotransmitter.

Genetic Considerations
Neurons, on average, express more than 14000 genes [66]. Many 

of these genes are exclusively expressed in different types of neurons 
and in different regions of the brain, while some are specific for the 
proteins found in post synaptic density [67-69]. Even neurons of the 
same type that appear to be morphologically similar show marked 
differences in patterns of gene expression [70]. Additionally, a similar 
trend of gene expression is seen in astroglial cells [71]. 

The important role of genes in structural development and 
therefore function of brain neural networks, calls for neural modeling 
at the molecular and gene level [72]. During the past decade, 
Computational Neurogenetics models [72] have been introduced 
that incorporate interactions between genes and their effect on 
neuronal functions and brain activity at the network level. In a series 
of studies, this approach was used for several inquiries such as the 
effect of a specific gene knockout on gene regulatory network and 
therefore network dynamics [73], and more recently for employing 
accurate low level molecular models of synaptic transmission and 
introducing probabilistic computational neurogenetic models [74]. 
An interesting observation among these modeling studies is that due 
to complex interactions between genes, deletion or mutation of a 
single gene may alter the whole network activity in such a way that 
it cannot be modeled by simple manipulation of high level neuronal 
parameters as the functional outcome of that genetic variation [73]. 
These observations show the importance of cellular and subcellular 
mechanisms on functional aspects of networks of neurons that are 
usually left out as insignificant or used with little details in modeling 
studies.

Neurological Diseases
One of the main applications of computational neuroscience has 

been in the modeling of neurological disorders such as psychiatric 
disorders, epilepsy, Parkinson’s disease and movement disorders, 
Huntington’s disease, Alzheimer’s disease, thalamocortical 

dysrhythmia, lesions and injuries, etc. [75-79]. There are some features 
that make modeling and simulation studies a valuable alternative in 
nervous system disease research, such as being inexpensive and free 
of ethical issues [76]. However, neural models of brain malfunctions 
mostly provide symbolic descriptions of different behaviors and do 
not capture the subjective experience which is of great importance 
in neuropsychiatric disorders [12,76]. Also, the nervous system 
is not structurally or functionally isolated of other systems such as 
endocrine and immune systems. Similarly, in several disorders of the 
nervous system, more than one system is involved in the etiology and 
pathogenesis, such as multiple sclerosis, epilepsy, amyotrophic lateral 
sclerosis, etc. 

Some examples of neuronal models with their drawbacks and 
limitations are provided in (Table 1).

Issues with Terminology Used in Modeling 
Studies

At the end of this section we will briefly comment on a few 
examples of neuroscience terminology used in modeling studies. 
Within the framework of computational modeling studies, the 
interdisciplinary nature of neuroscience also demonstrates the 
requirement for collaboration among theorists and experimentalists 
from various related fields for the purpose of the model being both 
computationally and physiologically plausible and therefore of use in 
real biological arena. In this regard, it is notable that some modeling 
studies have used terminologies that differ from core neuroscience 
literature and in many instances create confusion for the reader. 
Some of these terms are obsolete and are rarely used in current 
neuroscience literature. One example is inappropriate use of biological 
terminology such as synaptic space [86] or extra synaptic space [87] 
these are obsolete and incorrect terms, instead of synaptic cleft as an 
established term in neuroscience [88]. Another example is the use of 
term glion instead of glial cell [20]. Additionally, ‘glia’ is commonly 
used for astroglial cells, while it is a general term that encompasses 
astroglia, microglia, oligodendroglia and other non-neuronal cells of 
the nervous system. Also, the frequently used incorrect expression 
tripartite synapses for the connection between presynaptic and 

Cell type Considered 
in Model Comment / Limitation Reference

Neuron

Although capable of producing a wide range of behaviors, model’s parameters lack biophysical relevance and applicability 
[7]. [80]

This model incorporates a “threshold integrator” for two neurons connected by a functional synapse that only considers 
frequency-dependent plasticity. [81]

A large-scale spiking network model of the cerebellum including conductance-based, Leaky Integrate and Fire (LIF)* 
model specifically for representation of the passage of time; However, irrelevant types of neurons such as basket and 
stellate cells were omitted.

[82]

Glia A Biophysically realistic model for intracellular Ca2+ wave in glial network; however, it does not consider any mechanism 
for regenerative release of ATP [83]. [84]

Neuron and  Glia Although incorporating a detailed biophysical model for astrocyte, the neuron model is a phenomenological one, namely 
Leaky Integrate and Fire (LIF) model. [3]

Neuron and  
Interneuron

Realistic simulation of firing of 22 Types of excitatory and inhibitory cells of thalamocortical system using the basic 
Izhikevich neuron model [80]. However, the model lacks calibration or validation in the presence of multiple and diverse 
input signals.

[85]

“Point neuron” models including 4-Types of cells (2 neurons and 2 inter-neurons) in a network model of dentate gyrus; 
Only considers some specific connections between these cells based on the objective of the study and disregards others 
without biophysical relevance.

[2]

Neuron, Interneuron 
and Astrocyte

A biophysically realistic model for calcium dynamics in astrocyte along with Hodgkin-Huxley (HH) Type** models for 
neuron (pyramidal) and interneuron; However, it does not consider the specific geometry of the network and therefore the 
spatial propagation of signals and corresponding time delays.

[31]

Table 1: Examples of models based on different cell types and their limitations.

*LIF is a resistor-capacitor model with a resetting mechanism of spiking events and a delay for refractory period.
**HH-Type model includes a capacitance model of the cell membrane and voltage-dependent currents of various ions.
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postsynaptic neurons and astrocyte [89,90] in modeling studies is not 
an established terminology used in neuroscience literature. 

Modeling Perspective
One of the main aspects of any modeling study is its abstraction 

level. Different modeling studies incorporate different levels of 
biological details in their models that determine its general scope 
[19,91]. In this section, various advantages and disadvantages of 
abstract and detailed models are discussed. Specifically, within 
this framework, the multilevel modeling approach that has been 
successfully employed in some studies is investigated. Also discussed, 
is the biological correspondence as the major requirement of any 
modeling study.

Abstraction Level
Black box models, mostly provide an input-output relationship 

of the system. In spite of their common application in neuronal 
function modeling, these are certainly a major limitation on the 
role and impact of models used in the simulation of nervous system 
function. These simple phenomenological models with low level 
of details are computationally plausible and easier to analyze [19] 
and even show great performance in reproducing neuronal activity 
recorded in experiments [11]. However, these models do not consider 
various aspects of neuronal, glial, synaptic and network functions. 
Considering the high level of simplification in these models, an 
explicit correspondence between model parameters and physical 
variables is missing. Therefore, these models usually fail to give a 
useful explanation of the inner interconnections of the variables that 
are needed for the understanding of the modeled system [92-94]. 

On the other hand, detailed biophysical models incorporate 
several measurable physiological variables and therefore can provide 
good insights into the cellular and sub-cellular mechanisms involved 

in neuronal dynamics. In practice, these models’ ability in providing 
insights into the low-level molecular mechanisms of biological 
phenomena of interest, accompanied by full detailed knowledge and 
control of the experiment [76], makes them a valuable alternative in 
the study of the nervous system especially in neurological disorders 
research. However, these detailed models usually suffer from high 
dimensionality that can reduce the explanatory aspect of such models 
regarding the overall dynamical state of the neural system [95]. 
Furthermore, employing these biophysical models for constructing 
realistic large network models of whole brain or even specific brain 
areas requires an extremely large amount of computational resources 
which are only accessible to specific research centers around the 
world. In this regard, development of realistic large scale models of 
the nervous system is the main purpose of one of the multinational 
major projects launched in Europe in the field of Neuroscience, 
Human Brian Project (HBP) [96]. HBP has recently reported an in 
silico reconstruction of the neocortical microcircuitry of the rat brain 
as the most detailed model of less than a third of cubic millimeter 
piece of excitable brain tissue to date, containing about 30,000 
neurons and 37 million synapses [97]. While the reconstruction did 
not include many important details such as glia, multiple receptor 
types, neuromodulation and plasticity, it simulated some of the 
experimental observations of the brain [97]. However, this project that 
was ongoing for 10 years and involved a huge amount of funding and 
computational effort came under criticism for it’s over simplification, 
limited applicability and even justification necessary for reproducing 
the reported outcomes [98]. Additionally, an earlier study with much 
less funding and resources used a 2.5 million neuron model of whole 
brain with about one billion connections and explored the underlying 
neuronal mechanisms at several levels for cognitive functions with 
comparable results [99].

An alternative approach that has been successfully employed to 

Figure 2: Multi-level method for computational modeling of nervous system. This method integrates experimental observations obtained from different organizational 
levels (sub-cellular to behavioral) in a unified framework. 
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bring together the analytical power of phenomenological models with 
biophysical descriptive power of detailed models is the multilevel 
modeling approach in which different models corresponding to 
different levels, from sub-cellular to whole brain or organism, 
are constructed for the same phenomenon [95,100]. In order to 
overcome the limitation of two mentioned levels of modeling, these 
across-scale models attempt to recognize the relationship between 
parameters at different levels and their correspondence to existing 
biological variables. For instance, across-level modeling approach has 
been extensively incorporated in linking the decline in dopaminergic 
modulation to age-related increase in neural noise and decrease in 
the distinctiveness of cortical representations [4]. Another example is 
the successful application of models of spreading depression from a 
seizure generating area of brain and linking it to biophysical variables 
of additional increase in extracellular potassium concentration, 
indicating pathological process (activation) and potassium buffering 
indicating the recovery process (inhibition) [101]. Although 
a systematic method for deriving these multi-level models is 
still missing, these models can specifically help the integrative 
capacity of computational models in linking multimodel data, i.e. 
observations at different levels of organization by experiments (see 
Figure 2) which has been identified as one of the main challenges 
of the modern neuroscience [13,102]. This can be of great use in 
neurological disorders research also as most of these diseases include 
pathophysiological effects -from genes to behavior -that are usually 
too complicated to be unified in a single conceptual framework; 
for example, the specific application of computational models to 
understand the underlying mechanism of drug-resistant epileptic 
seizures [103]. Actually, this integrative approach to unifying multi-
level data is also attracting an increasing amount of interest in other 
fields of life sciences [104]. Furthermore, this across-scale approach is 
more compatible with the widely available computational resources 
to the researchers in this field.

Biological Correspondence 
For the model to be applicable, it should be in close correspondence 

with experimental observations considering its biological plausibility 
and validation [100,105]. As to biological plausibility, it is noteworthy 
that usually these models can mimic the experimental measurements 
in a broad range of values of their parameters that may or may not be 
in agreement with corresponding physiological values and therefore 
have biological relevance [91]. For instance, large variations of 
maximum conductance of voltage-gated currents in a conductance-
based model of a single neuron has shown to result in the same state 
of activity of silent, tonic or bursting [106]. Furthermore, in order 
to validate the model, it should be used to make experimentally 
testable predictions and hypotheses; as otherwise, the generalizability 
of the model (within its specific scope of application corresponding 
to experimental findings) becomes questionable (see Figure 3). An 
example is the application of computational models to predict the 
needed continuous background inhibitory synaptic drive and the 
excitation by parallel fibers to Purkinje cells for producing a highly 
irregular simple spike firing seen in vivo that was also confirmed in 
experimental recordings [107].

One of the main issues of modern neuroscience that has been 
specifically addressed in some worldwide projects such as Brain 

Research through Advancing Innovative Neurotechnologies 
(BRAIN) Initiative in the US is the technological limitations 
regarding experimental access to different cell types and subtypes and 
also dynamic monitoring of neural activity in large scale networks 
[108]. The predictive power of computational model can play a very 
important role in guiding the experiments in search for the key 
parameters in order to make them cost-effective considering the huge 
number of variables to be considered alongside the limited resources 
available, and also the expensive nature of experiments [13]. For 
instance, to investigate neurogenesis, computational models can help 
in solving the problem of developing behavioral tasks that specifically 
address the functional role of neurogenesis [19]. 

Within the framework of computational modeling studies, 
the interdisciplinary nature of neuroscience also demonstrates the 
requirement for collaboration among theorists and experimentalists 
from various related fields [109] (see Figure 3). A main issue in this 
area could be the different style of thinking among computational 
modelers, neurologists and experts from other disciplines. This 
necessitates a transdisciplinary approach from all the parties in 
expanding their knowledge about each other’s specific methodology 

Figure 3: Computational models requirements regarding their correspondence 
to experimental observations and their multidisciplinary nature that calls 
for collaborations between experts from various fields, some of which are 
shown in the figure. Each model should be able to reproduce experimental 
recordings at some level assured that its parameters fall into physiological 
range. Also, for validation, the model should be used for experimentally 
testable predictions.

Figure 4: Different aspects of computational neuronal models.
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[76]. In this regard, neurodynamics has been suggested as a 
common language that allows both computational and experimental 
examinations leading to a common framework for linking various 
behavioral, neural and molecular processes [110]. Obviously, 
acquiring thorough knowledge in various fields from mathematics 
and computer science to chemistry and medicine is simply beyond 
the competence of a single individual or even a few for that matter, 
and calls for a much higher level of collaboration as can be seen in 
a number of national and international projects such as BRAIN 
Initiative in the US and HBP in EU [13,97,108]. 

Concluding Remarks
So far, different aspects of the computational models of 

biological and modeling perspectives have been discussed. These are 
summarized in Figure 4. Additionally, a list of questions addressing 
some basic considerations regarding the scope and applicability of a 
model is given in (Table 2). 

Every model is basically an oversimplification of the reality and 
no matter how much detail is considered in a model, it will never 
be a perfect representation of the reality -That is why they are called 
models [76,100]. In addition, rapid and continuous advancements 
in the fields of biology and neuroscience lead to discovery of 
new processes and mechanisms that are then translated into new 
variables and these then have to be incorporated in the new models 
to be as near to the reality of the nervous system at different levels. 
Considering the limited computational power and experimental 
access, a key feature of any modeling study is the process of leaving 
out so called unnecessary details [95], which turns out to be a very 
difficult task in the modeling of the nervous system, considering its 
multidisciplinary nature. For instance, in computational models of 
neurological disorders, inappropriate selection of minimal neuronal 
models can lead to convergence problems, i.e., failure of model in 
producing pathological effects, which in turn can lead to misleading 
interpretations [12,76,100]. Development and application of the 
physiologically justified process of simplification can solve various 
problems and enhance applicability [111]. However, there is no 
absolute right level to the extent of details that can be included in 
a model [106]. Consideration to the intended application, available 
computational resources and experimental observations in employing 
a specific level of abstraction are usually taken as a necessary 
prerequisite for the modeling study of neuronal function [7,112].

Despite all the scientific and technological progress, 
computational neuroscience is in its early stages of mostly gathering 
data rather real modeling of the nervous system. Thus, expecting or 
claiming general one-size-fit-all models seems highly unrealistic at 
this stage [113]. In reality, diversity and emerging complexity of the 
nervous system makes it almost impossible to derive such a single 
universal model in any aspect or level. Studies on single neurological 
disorders such as epilepsy verify that no such model exists that can 
cover different types of even a single disease [63,105]. This is the 
reason why most of the network models of the brain are inspirations 
of biophysical realism resulting in qualitative explanations of 
experimental observations, rather quantitative predictions of 
measurable variables [76]. However, this doesn’t imply that scientists 
do not explore available resources for more biophysically realistic 
models. Actually, due to the high complexity of brain dynamics, 
computational models based on neurobiological principles can 
play an important role towards incorporating biological details in 
whole brain models which seems almost impossible in a conceptual 
framework [13]. As mentioned earlier, considering the limitations 
of widely accessible computational and experimental power, multi-
level modeling can play an effective role in providing some insight 
into underlying biophysical mechanisms that result in specific high 
level activity of the brain. This approach can lead to the needed 
shift from pure reproductions of neuronal activities by models, 
towards the application of these models for testing the available 
hypotheses on underlying mechanisms or experimental observations 
[104,114]. Specially, this is of great importance in modeling studies 
of neurological disease, if any, future application of these models in 
the diagnosis and treatment of those diseases is intended. This rare, 
not to say unique, quality of computational modeling in integrating 
structural, functional and dynamical properties in nervous system 
makes it a powerful tool in the area of neuroscience [105,109]. A 
number of international neuroscience projects have impressively 
expanded the computational and experimental borders. It is expected 
that in future, these projects will improve the applicability of modeling 
studies in neuroscience as well as their projection of highly complex 
biological reality of the  human brain [112].
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