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Abbreviations
NHL: Non-Hodgkin’s Lymphoma; MM: Multiple Myeloma; 

VEGF: Vascular Endothelial Growth Factor; SPECT/CT: Single-
Photon Emission Computed Tomography/Computed Tomography; 
VEGFRs: Vascular Endothelial Growth Factor Receptors; RTKs: 
Recetor Tyrosine Kinases; NIR: Near Infrared; NHS-HYNIC-Tfa: 
Trifluoroacetyl Hydrazino-Protected Form of the Succinimidyl 
Ester of HYNIC; BCA: Bifunctional Chelating Agent; ATCC: 
American Type Culture Collection; PBS: Phosphate Buffered 
Saline; PFA: Paraformaldehyde; BSA: Bovine Serum Albumin; 
FITC: Fluorescein Isothiocyanate; RT: Room Temperature; SEC: 
Size-Size Exclusion Chromatography; MALDI TOF/TOF: Matrix-
Assisted Laser Desorption/Ionization/Time-of-Flight; ITLC: Instant 
Thin Layer Chromatography; HPLC: High Performance Liquid 
Chromatography; % ID: Percentage of the Injected Dose; % ID/g: 
Percentage of the Injected Dose per Gram of Tissue; Cy7-NHS 
ester: Cy7-Monofunctional N-Hydroxysuccinimide ester; DMSO: 
Dimetyilsufoxide; MWBevacizumab: Molecular Weight of Bevacizumab; 
ε cy7: Extinction Coefficient of Cy7 at Abs747

Introduction
NHL and MM are lymphoproliferative diseases. VEGF 

overexpression occurs in many human tumors types, including 

lymphoproliferative disorders such as NHL and MM, which have 
been associated with poor prognosis [1-9].

VEGF family includes a large number of factors: VEGF-A, 
VEGF-B, VEGF-C, VEGF-D, and placental growth factor. Each one 
of them has their own receptor specificities and biological properties. 
VEGF family most known factor is VEGF-A which has different 
variants (VEGF121, VEGF145, VEGF148, VEGF165, VEGF183, 
VEGF189, and VEGF206), having each one diferente function and 
receptor specificity [10]. One of VEGF most important properties is 
to promote vascular endothelial cells growth and can prevent their 
apoptosis. It can also induce endothelial fenestration, modulating 
vascular permeability [11]. It has been established that many 
cytokines and grow factors could be responsible of VEGF mRNA 
expression upregulation or induce VEGF release [12]. Also VEGF has 
been shown to influence immune and cancer cells, although the exact 
mechanisms behind them are yet to be discovered [13].

Once VEGF role in angiogenesis was discovered, many inhibitors 
were developed in order to treat cancer [14-31]. In this way we 
can find anti-VEGF or anti-VEGFR monoclonal antibodies, small 
molecular inhibitors of recetor tyrosine kinases (RTKs) of VEGFRs 
[16,21,24,27,32-36]. One of the most popular anti VEGF antibodies 
is Bevacizumab (rhuMAb-VEGF, Avastin®, Genentech, USA) [37,38].
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Angiogenesis is a crucial process in the growth, development, and metastasis 
of many tumor types, including Non-Hodgkin’s lymphoma (NHL) and Multiple 
Myeloma (MM). Vascular endothelial growth factor (VEGF) overexpression is 
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a rational target for anti-angiogenic therapy in NHL and MM. The monoclonal 
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aim to evaluate Bevacizumab as a potential radioactive and fluorescence agent 
for imaging VEGF expression in MM and NHL.

Flow cytometry analysis revealed VEGF expression in MM and NHL cell lines 
is mainly intracellularly. Biodistribution and Single-photon emission computed 
tomography/computed tomography (SPECT/CT) studies of 99mTc-HYNIC-
Bevacizumab showed a slow blood clearance and supradiaphragmatic, head, 
axial and appendicular skeleton can be evaluated without much interference. 
Tumor-to-muscle ratio increased with time and is similar to the ones reported 
with other 99mTc-radiolabeled antibodies. Cy7-Bevacizumab fluorescent imaging 
allowed MM and NHL tumor visualization with greater spatial resolution than 
SPECT/CT.

We successfully synthesized 99mTc and Cy7-labeled anti-VEGF mAb 
(Bevacizumab) to be used to target VEGF expression in vivo in MM and LNH. 
Our encouraging results, although working with 99mTc, highlight the importance 
of radioinmuno-oncology as a potential tool to fight these diseases. Optical 
imaging of these tracers would enhance tumor sampling and guide surgical 
removal.
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Some of these antiangiogenic molecules have been radiolabeled 
in order to produce a diagnostic and/or therapeutic agent [39-87], 
having the potential to detect emerging tumors, monitor the response 
to treatment and predict treatment outcomes as well as refer patients 
that could benefit from anti angiogenic therapy. These molecules 
can also be labeled with a fluorescent dye in order to provide high-
resolution, real-time imaging of VEGF tumor expression [72,73,83], 
allowing to guide surgeries. NIR fluorophores have been increasingly 
used in this setting due to their reasonable penetration with almost no 
tissue autofluorescence [88,89]. Taking these facts into consideration 
the aim of this work was to develop new potential radioactive and 
fluorescent agents for imaging VEGF expression in NHL and MM. 
To this end, we labeled Bevacizumab with Cy7 and with 99mTc via 
NHS-HYNIC-Tfa as BCA.

Materials and Methods
Cell culture

Human MM and B-cell NHL cell lines (MM1S and Toledo) 
were obtained from ATCC and from Banco de Células do Rio de 
Janeiro, respectively. All cell lines were grown in RPMI-1640, pH 7.4, 
supplemented with 10% fetal bovine serum, 100U/mL penicillin and 
100µg/mL streptomycin. All cells were maintained at 37°C in a 5% 
CO2 incubator.

Flow cytometry analyses
Bevacizumab (AvastinTM anti-VEGF monoclonal antibody) 

produced by Genetech, Inc., was provided by Roche Laboratories, 
Uruguay.

Surface staining: After culture disaggregation the cells were 
washed 3 times in PBS (5min, 600g) and fixed in 2% cold and freshly 
prepared PFA in PBS. Samples were then incubated at 4°C for 15min. 
Following cross-linking fixation, cells were blocked for 1h at 4°C with 
PBS-3% BSA, and then incubated with 2μg of Bevacizumab-FITC 
(2mg/mL) in PBS-1% BSA. After 2h of incubation in the dark at 37°C, 
the cells were washed 3 times in PBS (5min, 600g). Data were acquired 
in a FACSCALIBUR® flow cytometer (BD Biosciences, San Jose, CA, 
USA) and analyzed using FlowJo software (Becton Dickinson & 
Company, Franklin Lakes, NJ, USA) [42].

Intracellular staining: After culture disaggregation in PBS, fixed 
in 2% PFA and washed, cells were permeabilized with 200µl of 0.2% 
(v/v) Tween-20 in PSA for 30min at 4°C. Then, cells were washed 3 
times in PBS-1% BSA (5min, 600g) to remove 0.2% (v/v) Tween-20 
from the medium, blocked for 1h at 4°C with PBS-BSA 3% and 
incubated with 2μg of Bevacizumab-FITC for1 h at 37°C in the dark. 
Then the cells were washed 3 times in PBS (5min, 600g). Data were 
acquired and analyzed as previously described in 2.2.1 section.

Controls for surface and intracellular staining included cells 
alone, isotype-FITC control (2μg for each batch) to determine 
autofluorescence levels, or unspecific reactions [42].

Linker Formation between HYNIC and Bevacizumab, 
radiolabeling with 99m-Technetium and quality controls

NHS-HYNIC-Tfa was synthesized and conjugated to 
Bevacizumab as previously described by our group [39-43,54]. Briefly, 
0.067μmol of Bevacizumab was mixed at RT for 30min with 0.33μmol 
of NHS-HYNIC-Tfa. The conjugate was purified by SEC and used 

MALDI TOF/TOF lineal to determine the level of conjugation.

Radiolabeling Bevacizumab with 99m-Technetium and quality 
controls were performed as previously described by our group [39-
43,54]. For this purpose, 44.6mol of Tricine, 44.3mol of SnCl2.2H2O 
and 6.7nmol of antibody conjugate were mixed, and immediately 
a Na 99mTcO4 solution was added. The mixture was incubated at 
RT for 30min and the radiochemical purity was evaluated by ITLC 
and HPLC [39,41]. The integrity of radiolabeled Bevacizumab was 
analyzed by HPLC by incubation at 37°C in 0.9% NaCl, serum and in 
different concentrations of L-Cysteine.

Animals and tumor induction
Healthy male BALB/c and BALB/c nude mice, 8-10-weeks-old 

(20-24 g), were obtained from the Animal House Facility of the 
Universidad de la República, Uruguay and from Animal House 
Facility of the Faculdade de Medicina da Universidade de São Paulo. 
All animals were maintained in ventilated cages in ventilated racks 
with sterilized food and water ad libitum, in a 12/12 h light/dark cycle.

Toledo and MM1S cells at a 0.5 x 107 concentration (with at least 
95% of viable cells) were subcutaneously injected in male BALB/c 
nude mice. The animals were followed daily for at least 1 month, 
evaluating tumor growth.

All procedures were in accordance with ethical principles 
adopted by Uruguayan Animal Experimentation Ethics Committee 
(procedure approval number 240011-002308-14) and Brazilian 
College of Animal Experimentation and approved by the Ethical 
Committee for Animal Research of the Faculdade de Medicina da 
Universidade de São Paulo (procedure approval number 279/12) 
[42,43,54].

In vivo biodistribution studies
99mTc-HYNIC-Bevacizumab biodistribution studies were 

performed on healthy male BALB/c mice and Toledo and MM1S 
tumor-bearing BALB/c nude mice (n=5 per group per time) as 
previously described by our group [42,43,54]. Briefly, animals were 
injected via intravenous tail with approximately 1.8MBq/100ug 
of radiolabeled Bevacizumab and euthanized by anesthetic drugs 
(xilazin-100mg/Kg and ketamin-300mg/Kg) after 2, 6 and 24 h. 
Selected tissues (heart, liver, lungs, thyroid, kidneys, stomach, spleen, 
gastrointestinal tract and bladder) were excised, rinsed of residual 
blood, weighed and their radioactivity measured in an dose Calibrator 
Capintec CRC7, Solid Scintillation counter with 3”x3” NaI(Tl) crystal 
detector associated to a ORTEC multichannel analyzer. Urine, blood, 
tumor (site of inoculation of the MM1S cell line in the MM model 
and lymph nodes in LNH model) were also collected together and 
measure. Organ activity was expressed as % ID and as % ID/g.

Bevacizumab-Cy7 conjugation
Bevacizumab-Cy7 conjugation was performed as previously 

described by our group [42,43]. Briefly, a solution of 500µL of 
Bevacizumab (0.5mg/mL) and 500µL of 0.15M NaCl was mixed 
and centrifuged at 14,000g for 10min at 4°C using a Centricom-30 
ultrafiltration device. The buffer was then changed to 0.1M NaHCO3 
(pH 8.3). One milliliter of Bevacizumab solution (0.5mg/mL) was 
mixed with a solution of Cy7-NHS ester diluted in DMSO. The 
reaction was carried out for 2h in complete darkness. To separate 
the free dye, the mixture was centrifuged at 14,000 xg for 10min at 
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4°C with a Centricom-30 ultrafiltration device and the sample was 
subsequently replaced with PBS.

The protein concentration in mg/mL was calculated according to 
the following formula: mg/mL Protein = (Abs280 - 0.04 x Abs747)/1.4

The ratio of Cy7: Bevacizumab in the final conjugate was calculated 
according to the following formula: ratio of Cy7/ Bevacizumab = 
(Abs747 x MWBevacizumab)/mg/mL Protein x ε cy7 (ε cy7 = 210000cm-

1M-1)

Molecular imaging
SPECT/CT imaging: SPECT/CT images were performed on 

a µPET/SPECT/CT instrument (Triumph, Trifoil Imaging Inc.) 
as previously described by our group [42,43,54]. After 7 days of 
inoculation of MM1S and Toledo cell lines into female BALB/c 
nude mice, a mixture of 2-2.5% isoflurane and oxygen were used for 
anesthesia, followed by an intravenous tail injection of 99mTc-HYNIC-
Bevacizumab (100µg, 74-111 MBq/mice). After 6 and 24 h SPECT/
CT images were acquired with a five-pin hole collimator (0.8mm 
spatial resolution, 55 x 55 mm trans-axial field of view, 64 projections, 
FOV=46mm) and reconstructed with an OSEM filter (5 interactions 
with 8 subsets) correction in a 20% of a 99mTc-window followed by a 
DICOM generation by the Amira 4.1 software and the co-registration 
were analyzed by Amide software [55].

Fluorescent imaging: In vivo fluorescent imaging of MM1S and 
Toledo tumor-bearing mice with Cy7-Bevacizumab (100µg) was 
performed to assess tumor uptake up 96h p.i [42,43]. A healthy, Cy7-
Bevacizumb uninjected Balb/c nude mouse was used as a control. 
Images were acquired with 745nm excitation and 800nm emission 
filters in an iVis Spectrum charge-couples device camera. Fluorescence 

images was quantified by total radiant efficiency quantification 
((photons/s)/(µW/cm2)) using Living Image 4.3.1 software. During 
fluorescence examination, all animals were anesthetized with a 
1-2% of isoflurane-oxygen mixture to enable imaging studies to be 
performed.

Statistical analysis
Data was analyzed using one-way ANOVA followed by Bonferroni 

post-hoc tests using GraphPad Prism 4.0 software. Differences were 
considered significant when p<0.5 [43,54].

Results
Flow cytometry analyses

The VEGF expression levels of human MM1S and Toledo cells 
lines were analyzed by flow cytometry using FITC-Bevacizumab. 
Figure 1 shows the surface marker (A.1 and B.1) and intercellular 
profile (A.2 and B.2) of MM1S and Toledo cell lines. Therefore, since 
VEGF was mostly detected by intracellular staining, this confirms 
that its expression is at this level.

In vivo biodistribution studies
In vivo biodistribution studies in healthy male BALB/c, MM1S 

and Toledo male BALB/c nude tumor-bearing mice are showed in 
Figure 2-4.

Blood radioactivity levels in healthy mice were 25.44 ± 2.78 %ID/g 
and 11.04 ± 2.83 %ID/g at 6 and 24 h p.i., respectively. MM1S tumor-
bearing BALB/c nude mice blood radioactivity levels were 15.55 ± 
4.48 %ID/g and 10.43 ± 0.93 %ID/g at 6 and 24 h p.i., respectively. 
Toledo tumor-bearing BALB/c nude mice blood radioactivity levels 
were 18.74 ± 1.62 ID/g and 14.34 ± 2.64 ID/g at 6 and 24 h p.i, 

Figure 1: Flow cytometry assay. Expressions levels of VEGF in MM1S and Toledo cell lines were assessed by flow cytometry using FITC-Bevacizumab. Cell 
Surface (A.1 and B.1) and intracellular (A.2 and B.2) staining is shown.
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respectively. This shows a slow clearance of radiolabeled antibody 
from the blood.

Liver radioactivity levels in healthy mice were 8.50 ± 1.62 %ID/g 
and 10.25 ± 2.25 %ID/g at 6 and 24 h p.i, respectively. MM1S tumor-
bearing BALB/c nude mice liver radioactivity levels were 7.59 ± 0.43 
%ID/g and 3.93 ± 0.56 %ID/g at 6 and 24 h p.i., respectively. Toledo 
tumor-bearing BALB/c nude mice liver radioactivity levels were 8.96 
± 2.48 ID/g and 4.25 ± 1.07 ID/g at 6 and 24 h p.i, respectively. Also, 
kidney radioactivity levels in healthy mice were 7.77 ± 1.13 %ID/g and 
4.98 ± 2.61 %ID/g at 6 and 24 h p.i, respectively. MM1S tumor-bearing 
BALB/c nude mice kidney radioactivity levels were 7.03 ± 0.35 %ID/g 

and 3.79 ± 0.05 %ID/g at 6 and 24 h p.i., respectively. Toledo tumor-
bearing BALB/c nude mice kidney radioactivity levels were 9.31± 
1.40 %ID/g and 5.23 ± 2.13 %ID/g at 6 and 24 h p.i, respectively. Liver 
and kidney uptake were related to radiolabeled antibody clearance. 
Also, gastrointestinal radioactivity levels in healthy and MM1S and 
Toledo tumor-bearing BALB/C nude was present related to hepatic 
clearance of the antibody.  At 24h p.i. (19.59 ± 5.00 %ID, 32.01 ± 5.96 
%ID and 11.25 ± 1.50 %ID) of 99mTc-HYNIC-Bevacizumab had been 
excreted in the urine. Less than 4 %ID/g was present in muscle, bone, 
thyroid and stomach at all analyzed time points.

MM1S tumor-bearing BALB/c nude mice lungs and intestine 

Figure 2: Healthy BALB/c and MM1S and Toledo tumor-bearing BALB/c nude mice biodistribution studies of 99mTc-HYNIC-Bevacizumab at 6 and 24 h p.i. Values 
are expressed as % ID per gram (or % ID/g) (mean ± SD, n=5).

Figure 3: Healthy BALB/c and MM1S and Toledo tumor-bearing BALB/c nude mice biodistribution studies of 99mTc-HYNIC-Bevacizumab at 6 and 24 h p.i. Values 
are expressed as % ID (or % ID) (mean ± SD, n=5).



Camacho X Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com J Mol Biol & Mol Imaging 7(1): id1033 (2022)  - Page - 05

radioactivity levels were 6.87 ± 2.66 %ID/g and 3.10± 0.15 %ID/g, 4.97 
± 0.05 and 1.61 ± 0.61 %ID/g at 6 and 24 h p.i, respectively. Toledo 
tumor-bearing BALB/c nude mice lungs and intestine radioactivity 
levels were 12.90 ± 4.10 and 3.02 ± 0.49 %ID/g, and 5.56 ± 1.17 and 
1.47 ± 0.31 %ID/g at 6 and 24 h p.i, respectively.

MM1S and Toledo tumor-bearing BALB/c nude mice reveled 
relevant 99mTc-HYNIC-Bevacizumab tumor uptake and retention. 
Tumor uptake in MM1S tumor-bearing BALB/c nude mice were 2.64 
± 0.22% ID/g and 2.91 ± 0.50 % ID/g at 6 and 24 h p.i, respectively. 
Tumor uptake in Toledo tumor-bearing BALB/c nude mice were 6.81 
± 0.87% ID/g and 8.76 ± 3.70 % ID/g at 6 and 24 h p.i., respectively.

MM1S tumor-bearing BALB/c nude mice showed 99mTc-HYNIC-
Bevacizumab tumor-to-muscle ratios of 3.13 and 3.42 at 6 and 24 

h, respectively. Toledo tumor-bearing BALB/c nude mice showed 
tumor-to-muscle ratios of 6.88 and 7.92 at 6 and 24 h, respectively.

Bevacizumab-Cy7 conjugation
The concentration of Cy7-Bevacizumab obtained was 2.04 mg/

mL, with a Cy7/Bevacizumab ratio of 2.6.

Molecular imaging
SPECT/CT imaging: 99mTc-HYNIC-Bevacizumab SPECT/CT 

images showed an irregular liver uptake in healthy and MM1S and 
Toledo tumor-bearing mice at 6 and 24 h p.i. (Figures 5 and 6). Beside 
liver uptake there were significant heart, spleen, kidney, bladder, lungs 
and intestine uptake at 6 h p.i. similar to our biodistribution findings 
(Figure 5.A and 6.A). Discrete tumor uptake was also evident in the 
back of the mice where MM cells were inoculated and in the lymph 

Figure 4: Tumor-to-blood and tumor-to-muscle ratios of 99mTc-HYNIC-Bevacizumab in MM1S and Toledo tumor-bearing BALB/c nude mice at 6 and 24 h p.i.

Figure 5: SPECT/CT axial, sagital and coronal images at 6 and 24 h post-injection of 99mTc-HYNIC-Bevacizumab on healthy (A) and MM1S tumor-bearing BALB/c 
nude mice (B). BALB/c nude mice SPECT/CT image shows non homogeneous heart, spleen, liver, kidney, bladder and gastrointestinal uptake and MM1S tumor-
bearing BALB/c nude mice SPECT/CT shows a remarkable uptake of the radiolabeled Bevacizumab in the site of cell inoculation (tumor uptake, yellow arrows).



Camacho X Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com J Mol Biol & Mol Imaging 7(1): id1033 (2022)  - Page - 06

nodes in the NHL model (Figure 5.B and 6.B). Tumor visualization 
was possible at 6 and 24 h, respectively.

Fluorescent imaging: Real-time imaging studies using Cy7-
Bevacizumab corroborated the previously quantified biodistribution 
results (Figure 7). Two MM1S and Toledo tumor-bearing mice were 
injected intravenously with 100µg of Cy7-Bevacizumab and were 
followed and quantified at 2, 24, 48, 72 and 96 h. Healthy BALB/c 
nude mice were used as control. Images showed clear liver and 
tumor (site of MM1S inoculation and lymph nodes) uptake of Cy7-
Bevacizumab fluorescence (Figure 7). Also, it was possible to observe 
increased retention and fluorescence of Cy7-Bevacizumab in the 
tumor in both models up to 96h p.i. Ex-vivo analysis at 96h p.i. in 
Toledo tumor-bearing mice reveled a significant retention of Cy7-
Bevacizumab in the lymph nodes corroborates the biodistribution 
results and SPECT/CT images.

Discussion
Tumor VEGF in vivo real time imaging expression has the 

potential to open the path to novel antiangiogenic diagnostic and 
therapeutic options. In this way, we evaluate in vivo VEGF expression 
in liquid hematological tumors such as MM and LNH through 
99mTc via HYNIC as bifunctional chelating agent and Cy7-labeled 
Bevacizumab. We designed and evaluated 99mTc-HYNIC and Cy7 
Bevacizumab as a specific LNH and MM imaging agent, taking into 
account 99mTc widespread availability and our experience labeling 
antibodies with 99mTc-HYNIC [68-70,90-94].

MM1S multiple myeloma and Toledo non-Hodgkin’s lymphoma 
cell lines have been reported to express VEGF [98-101], so these 
cell lines were used for in vitro characterization of FITC-labeled 
Bevacizumab to confirm its VEGF binding affinity and specificity. 
Flow cytometric analysis using FITC-Bevacizumab showed 
differences in the level of expression between membrane-bound and 
intracellular VEGF, clearly demonstrating that in the cell lines tested, 
this factor is mainly expressed intracellularly. These results allowed us 
to perform in vivo studies and for this purpose we developed MM and 
NHL tumor models based on the induction of MM1S and Toledo cell 

lines in female BALB/c nude mice.

Biodistribution studies with 99mTc-HYNIC-Bevacizumab in 
healthy and tumor-bearing BALB/c mice show, that blood clearance 
is slow and that a longer-lived radioisotope would be an interesting 
option to work with. Although until now, we are not aware that there 
were any prior studies that combined MM, NHL and 99mTc-HYNIC-
Bevacizumab. We must remember that these are liquid tumors, not 
solid ones, and SPECT-CT imaging of a tumor-bearing Balb/C Nude 
mice does not exactly reflect what happens in these diseases and their 
distributions, but they are a standardized model to work with. From 
our results we can see that supradiafragmatic, head and axial and 
appendicular skeleton can be evaluated without much interference. 
Abdomen, due to radiotracer elimination has its limitations to 
image interpretation that could be enhanced with hybrid SPECT/CT 
imaging. These results were also seen in the biodistributions studies 
in both tumor models. Tumor-to-muscle ratio increased with time 
and are similar to the ones reported with other 99mTc-radiolabeled 
antibodies [69,91,95,96].

We also performed in vivo VEGF expression of these liquid 
tumors using Cy7-Bevacizumab. Labeling and images allowed us to 
visualize these tumors with greater spatial resolution than SPECT.

We have already reported 99mTc-labeled Bevacizumab in solid 
tumors [68-70] and also Cy7-Bevacizumab in LNH [97], and we 
would be very interested in performing a hybrid (double-labeled) 
agent, and thus combine the strengths of both modalities to apply the 
concepts of Guided intraOperative Scintigraphic Tumor Targeting 
and Guided Hybrid Intra Operative Specific Targeting for the 
assessment of VEGF expression levels associated with NHL and MM 
[102-110].

We believe that these fluorescent and radiolabeled antibodies have 
great diagnostic and therapeutic potential that has yet to be explored. 
These are the first steps towards it implementation, our results 
are promising, the work is not finished but show that it is feasible 
although possible limitations due to suboptimal 99mTc properties.

Figure 6: SPECT/CT axial and coronal images at 6 and 24 h post-injection of 99mTc-HYNIC-Bevacizumab on healthy (A) and Toledo tumor-bearing BALB/c nude 
mice (B). BALB/c nude mice SPECT/CT image shows non homogeneous heart, spleen, liver, kidney, bladder and gastrointestinal uptake and Toledo tumor-bearing 
BALB/c nude mice SPECT/CT shows a remarkable uptake of the radiolabeled Bevacizumab in the lymph nodes (tumor uptake, yellow arrows).
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Conclusion
MM and LNH is a deadly, frequent disease, and molecular 

imaging is used to monitor their progression.

The development of specific targeting probes such as Bevacizumab 
that targets VEGF opens the path to new ways to understand this 
disease, and provide novel diagnostic and therapeutic options. We 
successfully developed 99mTc and Cy7-labeled anti-VEGF mAb 
(Bevacizumab) to be used to target VEGF expression in vivo in MM 
and LNH. Our encouraging results, although working with 99mTc, 
highlight the importance of radioinmuno oncology as a potential 
tool to fight these diseases. Optical imaging of these tracers would 
enhance tumor sampling and guide surgical removal.
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