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Abstract

It is well known that the outer orbitals of an atom or molecule are responsible 
for their major physical and chemical properties. We computed the energies 
of the Lowest Unoccupied Molecular Orbitals [LUMO] and the energies of the 
Highest Occupied Molecular Orbitals [HOMO], which were obtained using an 
ab initio molecular orbital program. These orbital energies were correlated with 
the properties, both physical and chemical, of the bulk materials made from 
these various atomic systems using Artificial Neural Network (ANN) modeling 
procedures. Some of the bulk properties which have been previously studied 
are 1st ionization potential, melting point and boiling point. Additional properties 
which will be discussed in this manuscript will be electron affinity and percent 
hydrogen storage. In addition, thermodynamic state functions can also be 
modeled such as enthalpy, entropy of the sorption process and the partial 
pressure of stored hydrogen, which will also be discussed in this paper. We will 
present results of the modeling studies of single atoms and small atomic clusters. 
We will present results that show several chemical and physical properties of the 
bulk materials which are modeled by our computational procedures. Gaussian 
03 and 09 molecular modeling software was used to perform Density Functional 
Theory (DFT) single point energy calculations on the structurally optimized 
atomic and molecular systems. In the Gaussian program, the LanL2DZ basis 
set and the B3PW91 functional was used. The LanL2DZ basis set incorporates 
parameters that accounts for the relativistic effects of heavier elements. In 
addition, we will summarize results of several different types of metal hydride 
clusters used for the storage of hydrogen gas. 
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bases in organic synthesis, refrigeration, desiccants to remove 
water from solvents, hydrogen processing, thermal applications, 
hydroformylation reactions and hydrogen storage. Some of the 
specific uses for metal hydrides are in the areas of: switchable optics, 
battery storage (i.e. nickel metal hydride), heat pumps, thermal 
compression, and gas isotope separation. 

The majority of the consumption of energy in the U.S. currently 
is fossil fuels [1]. Hydrogen is a more suitable candidate to replace 
fossil fuels if it can overcome several obstacles. One of these obstacles 
would be the development of a reliable, inexpensive hydrogen source. 
It would be costly to completely convert current infrastructure in 
order to move away from fossil fuel energy; however, it will be worth 
the effort. Hydrogen is a clean, efficient and almost inexhaustible fuel 
supply since water would be the primary source of the hydrogen fuel. 
A second obstacle is the safe storage of hydrogen in a form other than 
liquid or gas. It is the opinion of the authors that metal hydrides will 
help to alleviate this second obstacle. 

 The major impetus for this research was to determine new metal 
hydride materials for use in the storage of hydrogen. If we are to 
develop new sustainable energy sources, hydrogen must be at the 
top of this list. The source of hydrogen would be water, of which the 
earth has almost an inexhaustible supply. Hydrogen gas is known 
to have the largest energy content of any fuel that would be used in 

Introduction
Hydrogen gas as a potential new fuel is undergoing increasing 

scientific attention as it is being seen as a new fuel source by 
transportation and other energy related industries [1]. What makes 
hydrogen so attractive as a fuel is that it produces zero-emissions 
when reacted with oxygen. It can be used in electrochemical cells 
such as fuel cells or directly as a fuel in an internal combustion 
engine. It has long been used as a fuel for the propulsion of spacecraft. 
Hydrogen is found in the first group and first period in the periodic 
table making it the lightest element. It is also the most abundant 
element in the universe and is the primary fuel source for our sun and 
all other stars. However, the most abundant source of hydrogen on 
earth is water. Therefore, having an inexpensive and reliable method 
for obtaining hydrogen from water would be necessary before a 
hydrogen economy could be realistically considered. In addition, 
a second necessary criteria before a hydrogen economy could be 
realized is that an economically feasible method to store hydrogen 
must be perfected. One class of materials that has been shown to 
be efficient in storing hydrogen gas at ambient temperatures and 
pressures is metal hydrides. 

While there are several applications for metal hydrides, there are 
two main types: stationary and mobile [1]. Stationary metal hydrides 
are used as reducing agents (adding hydrogen) in chemical reactions, 
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transportation. With an energy content of 120MJ/kg it is almost three 
times the energy content of gasoline which has an energy content of 
45 MJ/kg [2,3]. The major problem in using hydrogen currently, is 
that it can only be used in two forms; liquid or gas. Liquid hydrogen 
requires temperatures to be maintained below -252.87°C (20.28 K). 
In the gaseous state, hydrogen would need to be stored in tanks 
pressurized to 10,000 psi. Neither the liquid nor gaseous state of 
hydrogen would make a viable and safe option for our current means 
of transportation. Metal hydrides provide a viable solution to this 
problem. For example, a metal hydride made from magnesium and 
nickel or one made from lanthanum and nickel can store twice as 
much hydrogen for the same energy content as can be stored in the 
gaseous form, and about twenty five percent more energy content 
than in the liquid form. In addition, if a tank of hydrogen in either 
the gaseous or liquid form ruptures a catastrophic explosion would 
result. If a tank containing hydrogen stored as a metal hydride 
ruptures, the only consequence would be the clean-up of the solid 
metal hydride material. No explosion would result from the rupture 
of a metal hydride containing tank. 

Methods
 The metal hydride clusters were initially modeled using 

HyperChem 5.01 molecular modeling software [4]. This program 
was used to construct and optimize where necessary, the atoms 
which made up the metal hydride nano-clusters. Spin multiplicity 
for the lowest ground state as determined from term symbols were 
used for geometry optimizations of these elements. Gaussian 03 [5] 
and Gaussian 09 [6] molecular modeling software was then used 
to perform Density Functional Theory (DFT) single point energy 
calculations on the structurally optimized clusters. In the Gaussian 
program, the LanL2DZ basis set and the B3PW91 functional was 
used. The LanL2DZ basis set incorporates parameters that accounts 
for the relativistic effects of heavier elements [7]. 

An artificial neural network (ANN) was used to predict the 
properties of the nanoclusters modelled in this study [8, 9]. A set of 
processing elements (or nodes) are used to construct a feed-forward, 
back propagation artificial neural network (see Figure 1) [8]. These 
nodes are interconnected in a network that can then identify patterns 
in the data. In a sense, the network learns from “experience” which 
distinguishes neural networks from traditional computing programs 
that simply follow instructions in a fixed sequential order. The 
ANN program extracts the functionality of the relationships buried 
within the weight space which the ANN uses to correlate the atomic 
orbitals and other input data, with the various chemical and physical 
properties of the nanocluster materials corresponding to the specific 
metal hydride. The input layer consists of twenty highest occupied 
molecular orbitals (HOMOs), twenty lowest unoccupied molecular 
orbitals (LUMOs), total energy, and dipole moment. The output node 
contains the physical or chemical property to be predicted in our 
modelling procedure. First, we present the above input data (LUMOs, 
HOMOs, etc…) from nanoclusters for which the chemical or physical 
properties are known. This input and output data constitute the 
training set for an artificial neural network. Next, we calculate the 
highest occupied molecular orbitals (HOMOs), lowest unoccupied 
molecular orbitals (LUMOs), total energy, and dipole moment 
for nanoclusters which have not previously had their properties 
measured. The trained ANN will use this input data to predict the 

specific property we are interested in from the list of properties below 
[10]. 

After we completed the fully trained artificial neural network, 
we did a complete cross-validation. We took out approximately ten 
percent of the data from each property that was being modeled. We 
trained on the remaining ninety percent and used the remaining ten 
percent of the data that was removed to test the validity of the trained 
neural network. We repeated this process until every data point in a 
particular data set had its turn in a testing set. (Figure 1)

There were numerous physical and chemical properties that were 
modelled. Among the properties studied were [1-3,11]:

1. Negative log of pressure of stored hydrogen

2. Weight % hydrogen stored

3. Enthalpy

4. Entropy

5. Desorption temperature at 1 atm

6. Electron affinity

In the results section we will discuss several of the above 
properties. 

Results and Discussion 
We began our calculations by modeling 225 pure metals and 

small metallic clusters, assuming some clusters would be trimmed as 
outliers to improve training. As stated, this includes 23 pure metals 

Figure 1: Artificial Neural Network Architecture.

Figure 2: Correlation plot of experimental % weight hydrogen vs. ANN 
predicted % weight H2.
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whose experimental value of percent weight of stored hydrogen is 
known. These 23 metal clusters were set aside in order to later use 
as a prediction set once the network has been trained. The ANN was 
trained to an error limit of 0.001. The outliers from those trainings 
were removed from the set leaving 198 from the original 225 metal 
clusters. The prediction with 198 metals is shown in Figure 2. The 
predicted values with greater than two standard deviations from the 
mean of the %weight hydrogen stored was the criteria for eliminating 
outliers. The network underwent cross validation for all 198 metal 
clusters and the results are seen in Figure 1 [11]. In addition, the 
unknown group was predicted using the correlations of the model. 
Their predicted value was compared with experimental values were 
available, which were found in the literature. The results are given in 

Table 1 [11] (Figure 2) (Table 1). 

Figure 3 is a correlation plot of the experimental -log of the 
pressure vs. the neural network prediction of -log of the pressure 
at 25°C (using units in atmospheres). The plot shows a very strong 
correlation between the experimental and the predicted -log of the 
pressure with a correlation of R2 equal to 0.99 [9,11]. 

Figure 4 shows the correlation of twelve pure metal hydride 
clusters from the neural network prediction of percent weight 
hydrogen to experimental values of percent weight hydrogen for the 
metal hydrides with the highest values measured [11]. 

Figure 5 shows the correlation of the neural network experimental 
enthalpy vs. neural network predicted enthalpy. The units are 
kilajoules/mole. The correlation is very good with a value of R2 =0.96 

Figure 3: Correlation plot of experimental -log pressure vs. NN predicted 
-log pressure.

Figure 4: Correlation plot of experimental % weight hydrogen vs. ANN 
predicted % weight hydrogen.

Figure 5: Correlation plot of experimental enthapy vs. ANN predicted 
enthalpy.

Figure 6: Correlation plot of experimental entropy vs. ANN predicted entropy.

Figure 7: Correlation plot of experimental temperature at 1 atm of pressure 
vs. ANN predicted temperature at 1 atm of pressure.

Figure 8: Correlation plot of experimental value of electron affinity and ANN 
predicted value of electron affinity.
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[9,11]. 

Figure 6 shows a correlation between experimental entropy and 
predicted entropy using ANN. The units are in kilajoules/mole. The 
correlation for this plot is very good with an R2 value of 0.89 [9,11]. 

Figure 7 shows the correlation of the neural network prediction of 
temperature at one atmosphere of pressure. The unit of temperature 
is Kelvin and the unit of pressure is in atmospheres. The correlation is 
very strong with an R2 value of 0.94 [9,11]. 

As can be seen in (Figure 8), the electron affinities for 9 two atom 
clusters was plotted with a correlation R2 =0.76. This correlation was 
obtained using the leave one out cross validation procedure. That is 
training occurred by eliminating one data point at a time and training 
on the remaining data points. Each data point took its turn in not 
being included in the training [9,12]. 

Table 2 displays examples of experimental data which 
characterizes the specified metal and metal clusters shown in the first 
column. This data was used for training all five predictions shown 
in the above table. The convergence limit for error was set at 0.001 
for all training. Log pressure at 25°C, temperature at one atmosphere 
of pressure, weight percent hydrogen, enthalpy and entropy were all 
trained successfully [9,11]. 

Summary 
This manuscript summarizes the results of modeling studies 

Metal 
Custer

ANN prediction of % weight 
H2

Known 
Cluster

Measured 
value

YNi 1.15 1.58

ZrMn 1.63

PrAg 1.55

PrGa 0.05

SmMg 0.27

YCu 0.75

LaAl 1.08 (LaAlH2.6) 1.54

GdCu 1.20 (GdCuH2.0) 0.90

DyAl 1.07

GdAl 1.32

TiCo2 1.72

LaZn 1.63

MgNi2 3.86

TiAg 0.77

SmMn2 1.64 (SmMn2H2) 0.76

DyAg 1.13

LaAg 0.25 2.23

CeAg 1.35

ScRu2 1.08

TiFe2 1.07

LaAl2 0.51

LaPt2 0.96

PrMg 0.41

Table 1: Prediction of unknown metal hydrides along with a limited number of 
experimental values.

Metal Pressure at 25°C 
(atm)

Temperature for 
1 atm

Weight 
%H

ΔH (kJ/
mol)

ΔS (kJ/
mol·K)

TiFe 4.1 -8 1.86 -28.1 -0.106

Ti 4E-20 643 3.98 -164 -0.179

TiCo 0.004 135 1.45 -54 -0.135

Zr 6.4E-28 881 2.16 -217 -0.188

ZrCr2 0.0029 166 1.82 -45.2 -0.103

ZrMn2 0.001 167 1.77 -53.2 -0.121

ZrNi 0.0000004 292 1.85 -76.85 -0.136

Mg 0.000001 279 7.66 -74.5 -0.135

Mg2Ni 0.00001 255 3.6 -64.5 -0.122

V 2.1 12 3.81 -40.1 -0.1407

Pd 0.0082 147 0.72 -41 -0.0976

Table 2: Experimental data for pressure, temperature for 1 atm, weight percent 
hydrogen, enthalpy and entropy.

concerning the prediction of numerous physical properties of small 
metallic hydride nanoclusters. These properties include; negative 
log pressure, weight percent hydrogen stored, enthalpy, entropy, 
temperature at 1 atm pressure and electron affinity. The result of these 
predicted values was excellent ranging in R2 values from a high of 0.99 
to a low of 0.56. Considering the diversity of properties predicted, the 
authors feel these predictions made in these studies were very good. 
The input for all neural network simulations were the same; that is 
for each nanocluster the same lowest unoccupied molecular orbitals, 
LUMOs, highest occupied molecular orbitals, HOMOs, total energy 
and dipole moment were used. The only different data for each new 
training set was the specific physical property being modeled, i.e. 
enthalpy, electron affinity, etc…  

Conflicts of Interest 
The authors declare no conflict of interests.

References
1. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. 

Washington, DC: The National Academies Press. National Research Council 
and National Academy of Engineering 2004.

2. “Fossil and Alternative Fuels – Energy Content” Engineering ToolBox. 2008.

3. Overview of Storage Development DOE Hydrogen Program. Office of Energy 
Efficiency &  Renewable Energy. 2000. 

4. HyperChem(TM) Professional 5.01, Hypercube, Inc., 1115 NW 4th Street, 
Gainesville, Florida 32601, USA. 2013; 3: 61-70.

5. Gaussian, Revision C, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, et 
al. Gaussian, Inc., Wallingford CT, 2004.

6. Gaussian, Revision A, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, et 
al. Gaussian, Inc., Wallingford CT, 2016.

7. Kohn W, Sham LJ. “Self-consistent equations including exchange and 
correlation effects”. Physical Review. 1965; 140: A1133–A1138. 

8. Darsey JA, Mitchell NC, Buzatu D. Artificial Intelligence modeling of materials’ 
bulk chemical and physical properties. STAR. 2006; 44: 1-7.

9. Griffin WO, Darsey JA. Bulk Metallic System Modeling of Metal Hydride 
Dimer and Trimer Nanoclusters. J. Comput. Theor. Nanosci. 2010; 7: 1-6.

10. Griffin WO, Darsey JA. Artificial neural network predication indicators of 
density functional theory metal hydride models. Int. J. Hydrogen Energy. 
2013; 38: 11920-11929.

11. Griffin WO. A DFT Computational Model of Metal Hydrides. Ph.D., University 

https://www.nap.edu/catalog/1092/homelessness-health-and-human-needs
https://www.nap.edu/catalog/1092/homelessness-health-and-human-needs
https://www.nap.edu/catalog/1092/homelessness-health-and-human-needs
https://www.engineeringtoolbox.com/fossil-fuels-energy-content-d_1298.html
http://www.sciepub.com/reference/28832
http://www.sciepub.com/reference/28832
https://gaussian.com/g03citation/
https://gaussian.com/g03citation/
https://gaussian.com/glossary/g09/
https://gaussian.com/glossary/g09/
https://journals.aps.org/pr/abstract/10.1103/PhysRev.140.A1133
https://journals.aps.org/pr/abstract/10.1103/PhysRev.140.A1133


Ann  Materials Sci Eng 4(1): id1036 (2019)  - Page - 05

Darsey JA Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

of Arkansas at Little Rock, Little Rock, Arkansas 72204. 2012.

12. Mitchell NC. A Systematic Approach for Developing Feed-Forward/Back-
Propagating Neural Network Models for Predicting Bulk /chemical and 

Physical Properties of Transition Metals. Ph.D., University of Arkansas at 
Little Rock, Little Rock, Arkansas. 2007.

Citation: Darsey JA, Szwedo SM and Griffin WO. Studies of Metallic Hydride Clusters for Use in Hydrogen 
Storage. Ann Materials Sci Eng. 2019; 4(1): 1036.

Ann Materials Sci Eng - Volume 4 Issue 1 - 2019
ISSN : 2471-0245 | www.austinpublishinggroup.com 
Darsey et al. © All rights are reserved

https://docs.lib.purdue.edu/dissertations/
https://docs.lib.purdue.edu/dissertations/
https://docs.lib.purdue.edu/dissertations/
https://docs.lib.purdue.edu/dissertations/

	Title
	Abstract
	Introduction
	Methods
	Results and Discussion 
	Summary
	Conflicts of Interest 
	References
	Table 1
	Table 2
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

