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and mature oocytes was detected, while in humans the regulation of 
glutathione peroxidase and SOD transcripts has been documented 
[18]. As regards catalase, mRNA has been found in fertilized oocytes 
in the mouse and bovine [19], but not in humans [18]. Catalase 
activity has also been detected in immature and in vitro matured 
bovine oocytes [20].

It has been shown that several transcription factors involved 
in developmental processes are regulated by the intracellular red 
ox potential [21-26]. These factors are sensitive to oxidation or 
S-glutathionylation by ROS and require NAD (P) H o NAD (P)+ 
[27]. In somatic cells, it has been observed that red ox state and ROS 
levels are negatively related. A high intracellular oxidative activity 
(for example, due to the increase in the mitochondrial oxygen 
consumption rate) is usually associated with a decrease in ROS 
production [28]. In the mouse, it has been demonstrated that redox 
state and ROS production regulation have a fundamental importance 
in early embryo development [27].

In the bovine, we found clear and distinctive metabolic patterns 
as regards redox activity and fluctuations in ROS production between 
non-activated oocytes, in vitro fertilized and parthenogenetically 
activated oocytes; sperm-activated oocytes presented an increase in 
oxidative activity corresponding with the initiation of pronuclear 
formation and first mitotic division, suggesting increased demands 
of energy for these events [29]. This increase can be related with 
results obtained by other groups who described that one and two 
cell bovine embryos are dependent on mitochondrial oxidative 
phosphorylation for energy supply, consuming oxidative substrates 
to produce ATP [30,31]. Coincidently, a higher oxygen consumption 
rate was detected prior to cleavage in bovine zygotes [32]. It remains 
to be studied if these metabolic patterns are shared by other species, 
including humans.

In conclusion, there is still much to investigate about the 
participation of ROS and the influence of red ox state in oocyte 
maturation, IVF and embryo development. The study of the 
characteristic behaviors in red ox activity and ROS level fluctuations 
during early development could be integrated in our understanding of 
indicators of oocyte quality and embryo developmental competence. 
Therefore, future works should be carried out to clarify the role of 
these metabolic parameters in order to improve IVF and other 
assisted reproduction techniques.
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Editorial
The role of Reactive Oxygen Species (ROS) and redox state 

in reproductive processes is still controversial. The presence of 
antioxidant enzymes in several mammalian species suggests that 
defense mechanisms are conserved and would be important for the 
last stages of oocyte maturation and for early embryo development 
[1]. However, in some species, as in the bovine, the addition of 
antioxidants to the culture medium resulted in a decrease in the 
percentage of blastocysts produced in vitro [2]. Moreover, in sperm, 
ROS have been described to have an important participation in 
the regulation of all the functional parameters, including motility, 
capacitation, sperm-zona pellucida interaction, acrosome reaction 
and sperm-oocyte fusion [3,4].

Several studies propose that physiological ranges of ROS 
concentration in the follicular fluid may be the result of the balance 
between pro-oxidant systems and scavengers and would be necessary 
for normal oocyte development [1]. Therefore, certain ROS levels could 
be indicators of healthy oocytes, while their excess would indicate 
oxidative stress, which could compromise In Vitro Fertilization (IVF) 
[5-8]. The total antioxidant capacity of the follicular fluid is considered 
a predictive marker for a successful IVF [7]. The beneficial effect of 
the follicular fluid against oxidative damage would be due in part to a 
high Superoxide Dismutase (SOD) activity, which has been shown to 
have a positive correlation with an increase in cytoplasm maturation 
in the porcine oocyte [9]. In contrast, in humans, a high SOD activity 
has been associated with oocytes which failed to be fertilized [10], 
but physiological concentrations of another antioxidant enzyme, 
glutathione peroxidase, presented a positive correlation with IVF 
rates [11].

In addition, the antioxidant deposits (as mRNA or proteins) in 
the oocyte during its growth and maturation would also be important 
for embryos to obtain developmental competence [1]. In somatic 
cells, the presence of a mechanism of regulation of the synthesis 
of antioxidants in pre and post translation stages has been proved 
[12-14]. This could be relevant for oocytes during the maturation 
process, in which translation and post-translation regulation of 
protein synthesis prevail [15-17]. In the mouse, mRNA which codify 
for glutathione peroxidase, SOD and γ-glutamylcysteine synthetase 
(important enzyme for glutathione synthesis) both in immature 
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