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Abstract

We consider a Semi-Markov Process (SMP) to model the evo-
lution of bladder cancer, which takes different states over time. A 
multi-state model has been constructed and applied to data collect-
ed from 847 patients during a period of fifteen years. Biomedicine 
databases usually contain censored data and this study shows that, 
despite this, a good fit of the main survival measures is achieved by 
using our specific model. This paper aims to present estimators for 
the semi-Markov kernel, the survival function and the mean time 
to disease progression. The strong consistency properties of the es-
timators are proved.

Keywords: Bladder cancer; State-space model; semi-Markov 
process; Censored data; Kaplan-Meier estimator; Survival function; 
Strong consistency

Introduction

There is a relatively high incidence of bladder cancer in the 
community. Fortunately, it does not usually progress to the 
more invasive stages and it as a low mortality rate, but fre-
quently it requires lengthy and expensive treatment. Hence, 
in the study of the evolution of the disease, indentifying the 
time in which patients spend in the different states, and the 
analysis of survival rates are important for the development of 
more appropriate medical treatments. In the literature, surviv-
ing bladder cancer and other diseases has been addressed by 
using different approaches and methods. The Cox model [4] 
is often used in these types of studies and the Kaplan-Meyer 
estimator of the survival function is commonly applied when 
there are censured data [3]. For bladder cancer, survival from 
the first recurrence or progression has been studied by using 
a non-parametric analysis with the Kaplan-Meyer estimator 
and the Cox model, or an extension of this model, in order to 
compare the risks among different groups [7,8]. Other applica-
tions are [16,17]. Patient monitoring has provided information 
on the evolution of this disease. Data reveal that after the first 
surgery to remove the tumor, a patient may experience several 
recurrences, which, may lead to disease progression in some 
cases. Multi-states models are dynamic systems for the study of 
recurrent events, as can be seen in [1,2,9]. They are appropriate 
for the study of chronic diseases when monitoring a cohort of 
patients.

In general, dependence on recurrent events is not often ad-
dressed, independence is assumed and, consequently, a Mar-
kov model can be used to govern the evolution of the bladder 
carcinoma [20]. Nevertheless, in [18], several multistate models 
focusing on a cohort of patients derived from the Cox model 
were applied, considering time-dependence among the covari-
ates.

It is well known that in Markov processes, the future evo-
lution of the process depends only on the current state, while 
homogeneous semi-Markov processes relax this hypothesis by 
assuming that the trajectory of the process depends not only on 
the current state but also on the time spent in it. Besides this, 
the sojourn time in each state can have an arbitrary distribu-
tion. Therefore, the use of phase-type distributions in Markov-
ian processes is a good approach, since they are a dense set in 
the set of distributions defined in R+, which also involve the ver-
satile Matrix Analytic Methods (MAMs). [15] is a recent paper 
on bladder cancer and Phase-type distributions, which provides 
a general fitting procedure for many applications. Multi-state 
models using semi-Markov processes are applied in [19], and 
the authors emphasise their suitability for use and how well 
their method can be adjusted to the problem they are dealing 
with. The main theoretical reasons are set out in [12-14].
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In this work, specific conditions for the construction of our 
model based on a semi-Markov process are required. The main 
measures for survival can easily be calculated from estimators 
which have excellent behavioural properties. These measures 
are achieved by using versatile procedures and methods suit-
able for the introduction of censored data and, therefore, they 
can be applied to other studies in Biomedicine. For the analy-
sis of the strong consistency of the estimators, we propose the 
definitions and properties in the corresponding section, as well 
as some essential results that have been studied previously in 
[5,6,10,11]. This paper is organised as follows: Section 2 pres-
ents the database and a statistical description of the main char-
acteristics. In Section 3, we explain the methodology and give 
the estimators that will be used in Section 4 for calculating the 
corresponding estimations. In Section 5, we prove the proper-
ties of strong consistency for the estimators. Finally, the conclu-
sions and some future extensions of this work are included in 
Section 6.

The Database

The database comes from the Department of Urology at La 
Fe University Hospital in Valencia (Spain). Data were collected 
from patients with bladder cancer from January 1995 to Janu-
ary 2010, a total of 847 patients whose carcinogenic cells were 
removed. These patients were submitted to periodical check-
ups and treatment in accordance with the protocol for this dis-
ease. The model we describe in the Methodology was fitted to 
this set of patients and it was constructed by including the total 
number of patients in the database. From the sojourn times be-
tween recurrences in patients, the estimators of the kernel and 
the survival function were determined. We have used all the 
information available, including the censored data.

The total number of patients is submitted to surgery at time 
. When a patient has a recurrence, the carcinoma is re-

moved and they arrive at state 1; from this point, forward tran-
sitions between successive transient states can occur. However, 
if a patient has disease progression, the bladder is removed and 
they occupy state P.

In subsequent medical check-ups, patients with recurrence 
entered new states up to the end of the observation period. A 
maximum of  recurrences within the observation period 
was reached by one patient. Thus, the set of transient states 
was reduced to  since from state  there were 
only two progressions, one patient with  recurrences and an-
other with  recurrences. Then, the state space can be consid-
ered as , where  represents three or more than 
three recurrences and  is the set with an absorbent 
state of disease progression P. State  means patients leaving 
the system with progression (P), and  represents patients 
leaving the system without progression (NP). The graph for the 
transitions between states of ,  is presented in Fig-
ure 1.

The patients without disease progression leave the system 
from state NP. This occurs when they are treated in other hospi-
tals or they can not return to the original hospital for other rea-
sons. Specifically, the time spent in the state  of , given that 
the next state that is visited is NP, is considered as a censored 
sojourn time in state . 

In Table 1, we give a summary of the sojourn times, in days. 
The great difference between state  and the other states is, in 
part, due to the fact that the accumulation of patients in state .

The minimum number of days that patients sojourn in hos-
pital is similar in all the states, however, the maximum number 
varies and these numbers differ greatly. The mean times are 
not very informative since a great standard deviations in all the 
states. The empirical distributions of these times are biased to 
the left.

Methodology

Let  be a finite set of states and a stochastic process with 
values in , , in such a way that:

• The jump times of  are  

• The successive states that are visited are: 

• The sojourn times in each state, between jumps are: 
and 

 with 

The stochastic process  defines a Markov renewal 
process, or equivalently, a semi-Markov process in the state 
space  if 

 

is verified, where  and  The process 
 is said to be a semi-Markov process (SMP).

The process  is a Markov chain with a state space 
 and a transition kernel between states , where 

,  
and 

The semi-Markov kernel is a square matrix 
which takes the following form in our model

Figure 1: Transition between states.

Figure 2: Estimation of the survival function, from state-to-state 
Kernel estimators.

Table 1: Empirical statistics of the stay times in the different states.
States n rang min max med mean sd

0 847 4248 85 4333 656 971.02 880.66

1 322 3895 87 3982 399.5 679.55 671.48

2 175 4009 83 4092 372 628.73 660.28

3 126 3192 82 3274 891.5 1101.56 800.25
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The matrix block that corresponds to the transient states is

We suppose that  is homogeneous in the time Markov 
chain with the state space  and transition probabilities

So,   is called the embedded Markov chain (EMC) in . 
The semi-Markov process associated with the Markov renewal 
process  is where

                                           if 

Let  be the condi-
tional distribution function for the times between jumps.

Then, we can write

  for , and

 

Moreover, the distribution function of the sojourn time 
spent in state  by  is

We also write .

An interesting property that uses the concept of convolution 
is

                                                                         =

Where  is the n-th Lebesgue-Stieljes convolution of 
, then

The above equation assumes that  and

The transition function of  is defined by

, 

Then, we write in matrix form

A property that allows us to define the survival function [12], 
is

Then, 

where  a matrix with one column, has its i-th element

In this application the initial law vector is  , and

and

Then,  we obtain the survival function

In the sequel, we first estimate the semi-Markov kernel  
and then, we introduce it into above equation, in order to ob-
tain an estimator of the survival function 

Empirical Estimator of The Semi-Markov Kernel

We are interested in the estimation of  from a sample 
of  trajectories, each with an independent semi-Markov pro-
cess. In fact, for each individual trajectory, we consider an SMP 

. These processes are i.i.d. with a common 
semi-Markov kernel  and an initial law .

If there is no reason to assume that the sojourn time in state 
i depends on the following state, it is possible to write

                                                       and 

 denotes the length of the observation period in the study, 
as described in Section (2). The independent processes consid-
ered are

For each individual process , with , we define:

• The total number of jumps before reaching , for the 
individual process :

• The total number of visits to state  before reaching , 
for the individual process :

• The total number of jumps from  to  before reaching 
, for the individual process :

• Regarding the  processes, the total number of visits 
to  and the total number of jumps from  to  before 
reaching  are, respectively:

From this point, it is possible to apply a filter to our database 
to select patients who visit state , so that, the estimation of 
each factor and finally the SM kernel  can be calculated.

The first factor of the kernel, which is the transition probabil-
ity of the EMC, is estimated as:
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However, for each transient state, it is possible to estimate

Also,   can be estimated by using the Kaplan-Meier es-
timator:

with  the survival times or arrival times at 
state  from state , with patients at risk just before  and   
progressions at each , where .

From the survival times and their corresponding censorship 
codes, all the necessary values of the Kaplan-Meier estimator 
can be calculated by automatic algorithms, as well as the surviv-
al frequency in each survival time and the number of patients 
at risk.

Other algorithms allow us to calculate the values of the con-
tinuous and stepped function . The calculation of these 
functions is the step taken before, obtaining the kernels and fi-
nally, the survival function, which is obtained by using approxi-
mation procedures for the corresponding convolutions. 

From the above estimations, we are able to estimate the 
semi-Markov kernels:

Survival Function Estimation

As a result of these calculations, we can define the survival 
function estimator for our model as:

Empirical Estimator of the Mean time to Progression

Let us consider the mean time to progression (MTTP), that is, 
the mean time for reaching the absorbing state 

It could be useful to estimate, by using right-censored sur-
vival data, the expected time to progression in a given interval 

 [3]:

This can be estimated as following

Estimation from our Data

In this section, we present the estimations of the semi-
Markov kernel and the survival function from our database de-
scribed in Section 2.

The conditional probabilities of transitions between the 
states we have been estimated and organised in the following 
matrix

The estimation of the survival function taken from the semi-
Markov kernel estimator has been represented in Figure 2.

In addition, note how to calculate the estimation of the 
MTTP in ,

where  days and  (days) has 
been calculated by using a procedure with  steps for 
successive approximations to the corresponding integral and an 
error close to , between the last two terms, as ar-
eas under the stepped functions.

Strong Consistency of the Estimators

We analyse the strong consistency of the estimators defined 
in Section (3), as  for a fixed 

Estimators of the Transition Probabilities

Proposition 5.1: The estimator of the transition probabilities 
of the S-M process is strongly consistent, i.e.,

Proof: In the In the context of semi-Markov processes, we 
have 

Let  with 

We are interested in this value because we know that, ac-
cording to the Strong Law of Large Numbers, when , 
the next convergence is almost sure:

We will demostrate that ,  from which we obtain: 

From state , where :

With a similar procedure, we can get:
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Finally, 

The Kaplan-Meier Product Limit Estimator

Let   be independent positive random variables 
with the common continuous distribution function F. Indepen-
dent to those variables, let  , also be independent pos-
itive random variables, which possibly have the non-continuous 
and defective common distribution function G.

Gill [11] and Borgan [3], analyse the problem that concerns 
how to perform a non parametric inference of F based on the 
censored observations , with

Let H be the distribution of the variables , given by

Traditionally, F is estimated by the 1958 Kaplan-Meier prod-
uct-limit estimator, defining processes N and Y on  by 
using

 and 

Therefore,

(t) ,

In the above equality, , where 
 �denotes the left-hand limit of the N(t) at s, i.e. the 

limit of N(t) when . Then,  defines the number 
of deaths at time s.

Proposition 5.2: Lemma 2.8 from Gill [11], says that for any 
 such that :

0 

Estimators of Kernels and Survival Function

Proposition 5.3: From the two previous results, we conclude 
that The S-M kernel estimator (t,K)  is strongly consistent, 
i.e.,

(t,K)   

Proposition 5.4: The convolution of kernel estimators is also 
strongly consistent, i.e.,

(t,K)   , 

Proof: We know that  and 
From the above proposition, we 

also know that

(t,K)   

So, we have

(s,K) (t-s,K)     

Finally, the Lebesgue dominated convergence theorem gives 
us the conclusion.

From the definition of the survival function for this applica-
tion and all the previous properties, we obtain:

Proposition 5.5: The estimator (t)   is strongly consistent, 
i.e.,

(t)   

Estimator of the mean time to Progression

The MTTP in a given interval  is

This is estimated by using

Proposition 5.6: The estimator    is strongly consis-
tent, i.e.,

Proof: We know that: from its definition.

(t)   , according to the previous proposi-
tion.

Then, the Lebesgue dominated convergence theorem gives 
us the conclusion,

Conclusions

The analysis of the evolution of diseases from experimental 
data is a difficult task as it is carried out by working on databas-
es in which the amount of information available is not as large 
as required, and much of the information comes from censored 
data. Therefore, the model we have developed shows a remark-
able goodness of fit to the corresponding real process. This is 
a consequence of its strong properties even though the model 
has relaxed assumptions. These assumptions are very important 
for the applicability of the process to other medical contexts. 
The SMP model we have built for this disease enables its kernels 
to be estimated, that is, the conditional distribution function 
in each transient state until the process jumps to another one. 
The estimation of the survival function and the mean time to 
the progression of the disease are important achievements that 
have been made with the model. These achievements provide 
useful information to medical experts for the creation of new 
treatments and preventive actions, especially when the survival 
time is long, as observed in this case. Moreover, each estima-
tion has involved procedures that have been generalised and 
they can be used in other applications.

A way to continue this first stage of research, is the study of 
other properties in the estimators we have used, such as as-
ymptotic normality. This desirable property allows a parametric 
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inference to be made, for example, the calculus of confidence 
intervals is of interest. Another possible extension of this re-
search is the introduction of explanatory covariates into this 
study, pursuing a more detailed and differential analysis among 
possible different risk groups, which will surely be applicable to 
other diseases.
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