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Abstract
Orf, also called contagious ecthyma or contagious pustular dermatitis, is a 

zoonotic viral skin disease caused by orf virus (ORFV). ORFV is a species of the 
Parapoxvirus (PPV) genus in the family of Poxviridae, with specific characters. 
ORFV develops various virulence factors that work alone or coordinate with 
each other assisting the virus in immune evasion and host infection. In this 
article, major virulence factors of ORFV were reviewed and the mechanism of 
its immune evasion was investigated.
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functions including: virulence, host range, immune evasion and 
immunoregulation [8]. Major virulence genes in ITRs included ORFV 
homologous ovine gene encoding cytokine IL-10 (vIL-10), ORFV 
interferon resistance gene (OVIFNR), vascular endothelial growth 
factor (VEGF) the virus encoding chemokine binding protein (vCBP), 
ankyrin (ANK), dUTP pyrophosphatase (dUTPase), granulocyte-
macrophage colony stimulating factor (GM-CSF) inhibiting factor 
(GIF), apoptosis inducing and inhibiting genes and ORFV121gene 
that inhibits the host NF-κB pathway [9]. These virulence factors 
are distributed in terminal at each end ITRs (Figure 1). Studies have 
reported a highly frequent rearrangement of the terminal sequences 
through duplication, transposition and deletion, which might 
provide a mechanism for rapid evolution enabling the virus to adapt 
to changing circumstances in the host. During the evolution and 
interaction with the hosts, ORFV develops a set of immune regulation 
strategy for replication and immune evasion, by taking advantage 
of various virulence factors. Understanding the various virulence 
factors and unraveling the mechanism of ORFV immune evasion can 
be beneficial to develop new and efficient vaccines or medications in 
order to make a quick and efficient responds to the orf outbreaks and 
prevalence’s. This article presented an up-to-date review on ORFV 
major virulence factors and its immune evasion mechanism.

Virulence factors in 5’ ITR
The dUTPase is an essential enzyme in nucleotide metabolism. It 

prevents the incorporation of excessive dUTP into the DNA, decreases 
the mutation frequency and maintains the genetic stability. Similar to 
herpes virus and type D retrovirus [10], ORFV expresses this enzyme 
[11]. Phylogenetic analysis has revealed that the dUTPase expressed 

Abbreviations
ORFV: Orf Virus; PPV: Parapoxvirus; ITRs: Inverted Terminal 

Repeats; vIL-10: IL-10; OVIFNR: ORFV Interferon Resistance Gene; 
VEGF: Vascular Endothelial Growth Factor; CBP: Chemokine 
Binding Protein; ANK: Ankyrin; dUTPase: Pyrophosphatase; GM-
CSF: Granulocyte-macrophage Colony Stimulating Factor; IFN: 
Interferon; PKR: Protein Kinase; VACV: Vaccinia Virus; DCs: 
Dendrite Cells; APCs: Antigen Presenting Cells

Introduction
Orf is an acute zoonotic viral skin disease [1] caused by ORFV, 

and it is often manifested by proliferative lesions [2]. ORFV is a 
typical representative of the Parapoxvirus (PPV) genus. The ORFV 
can lead to severe persistent infection or secondary infection through 
the damages the skin or mucous membranes. Orf is not normally fatal 
but it is a debilitating disease that can be fatal if lambs and kids are 
not prevented from secondary bacterial or fungal infections. It has 
been reported that more than 90% lambs infected with ORFV that 
aged one week did not survive the secondary or mixed infection of 
other pathogens [3]. This disease has worldwide distribution and was 
first reported in human by Newsome and Cross in 1934 [4,5] with 
the clinical features of erythematous macule, papule, vesicle, pustule 
and scab formation on the back of the hand, interphalangeal area and 
anterior arms [6]. Therefore, the breakout and prevalence of such an 
acute, highly contagious disease could have a serious impact on the 
development of goat meat industry and people’s health.

ORFV belonged to the Parapoxvirus (PPV) genus in the family 
of Poxviridae, expresses 35 virus proteins with molecular masses 
between 10 and 220 KDa on the surface of virus particles. Among 
these proteins, only those of 65, 39 and 22 KDa proteins could be 
recognized by the host immune system and stimulate the host to 
produce relevant antibodies. The viral genome, coding about 132 
genes [7], consists of the central region (CORE) and the inverted 
terminal repeat (ITR) at each end. The conservative central region 
contains genes that are essential for DNA replication as well as 
the production of virus particles in the cytoplasm of infected cells. 
The terminal genes are involved in unessential but yet important 
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Figure1: Schematic representation of key virulence factors in parapoxvirus.
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by ORFV has a closer phylogene to the one in mammalian species as 
compared to the other poxviruses. This could indicate that this gene 
might be involved in the between-species infections. Therefore, host 
gene capture [12] could be another ORFV mechanism in order to 
adapt to the host immune response.

Interferon (IFN) plays an important role in the anti-virus 
protection process [13]. The ORFV develops a protein against the 
host IFN response that is encoded by the ORFV interferon resistance 
gene (OVIFNR). This protein binds to the viral double-stranded (ds) 
DNA, inhibits the dsDNA-dependent activation of IFN-inducible 
protein kinase (PKR) and prevents the down-regulation of viral 
mRNA transcription [14]. It has been reported that when vaccinia 
virus (VACV) interferon resistance gene (E3L) is replaced by 
OVIFNR, VACV replication is not affected while its pathogenicity 
is severely decreased [15]. The OVIFNR decreases the host anti-virus 
activity through inhibition of the IFN response, which could facilitate 
ORFV immune evasion.

Virulence factors in 3’ ITR
Inflammation is a part of natural host immune response [16], 

which limits and eliminates the damage factors, helps in the repair of 
the damaged tissue, dilutes the toxin by liquid seepage and eliminates 
the necrotic tissue to facilitate further repair and regeneration [17]. In 
the process of inflammation, dendrite cells (DCs) play an important 
role as messengers between the innate and adaptive immunity. 
After stimulation, these cells secrete various cytokines to enhance 
nonspecific immune response. As one of the most powerful APCs, 
DCs have the ability to catch wild rang of antigens and present them 
to other immune cells [18-21] . ORFV can synthesize vCBP, a 2.5 Å 
protein with hexagonal crystal structure [22], that binds the receptors 
as competitive inhibitors of homogenous cytokines [23] and inhibits 
inflammation by preventing monocytes and DCs from transferring 
into the skin inflammatory lesions or peripheral lymph nodes [24,25]. 
By inhibiting the function of inflammation and DCs, vCBPs help 
ORFV to evade specific and nonspecific immune responses.

GM-CSF has well-documented stimulatory effects on the 
functions of monocytes and macrophages. The most important effects 
include macrophage differentiation and activation, which results in 
endocytosis, pathogen elimination and antigen presentation to T cells 
[26]. IL-2 is one of the Th1 cytokines, which plays a critical role in 
the immune response against intracellular pathogens [27-29]. GM-
CSF and IL-2, as cytokine immune regulator, induce host protective 
immune response. The GIF with a WSXWS motif, encoded by ORFV 
[30], can specifically inhibit the biological activity of IL-2 and GM-
CSF [31]. The GIF further suppresses the function of IL-2 and GM-
CSF in order to promote the ORFV survival.

The NF-kappaB family of transcription factors play a central role 
in the immune response by regulating several processes ranging from 
immune regulation, inflammation, stress response and apoptosis 
[32-34]. Some pathogens can inhibit the transcriptional regulation 
of NF-kB and promote immune evasion such that the host cannot 
eliminate them via inflammatory reactions [35,36]. The ORFV121 
encodes a novel NF-κB inhibitor that binds to NF-κB and inhibits 
the phosphorylation and nuclear translocation of NF-kB-p65 thereby 
inhibiting the translation of the immune-related genes [37]. The 
ORFV121 is a virulence determinant for ORFV in natural hosts. 

ORFV uses ORFV121 in order to disturb the host transcription and 
impair host immune response through inhibiting the NF-κB pathway 
signal transduction, such that it can successfully evade the host 
immune system.

The ankyrin repeat (ANK) is a common motif in proteins, which 
was first identified in yeast in 1987. The F-box-like domains are 
present in most of the poxvirus ankyrin repeat proteins that can take 
advantage of the proteasome mechanism of the host cells [38]. ORFV 
express the 5 ANK proteins that degrade the host’s anti-virus factors 
through the F-box-like domains, thereby promoting the ORFV 
replication and infection of different species [8, 39].

The vIL-10 gene of the ORFV is one of the early viral genes, 
which encodes a 21.7 KDa protein made of 185 amino acids [40]. 
Its polypeptide sequence shows a high level of amino acid identity 
to sheep (80%), cattle (75%), human (67%) and mice (64%) IL-10. 
vLI-10 inhibits the maturation and function of antigen presenting 
cells (APCs) such as dendrite cells (DCs), which could inhibit the 
proliferation and transcription of a range of Th1 cell cytokines 
including IL-2, IL-3, IFN-γ and GM-CSF. Consequently, this could 
decrease the secretion of TNF-α, IL-8 and IFN-γ from macrophages, 
CD8+ lymphocytes and keratinocytes [41,42]. It has been reported 
that vIL-10 inhibited the secretion of IFN-γ and GM-CSF from 
Concanavalin A- (ConA)-activated peripheral lymphocytes [41]. 
Furthermore, it is known that vIL-10 has a partial ability to inhibit the 
proliferation of THP-1 monocytes and the synthesis of some factors 
[43]. vIL-10 can also induce CD4+ Th1 cells, the major participants 
of immune response, in order to inhibit the secretion of IFN-γ from 
NK, CD4+ and CD8+ cells [44]. In other words, vIL-10 inhibits the 
immune responses and provides suitable environment for the ORFV 
infection.

Vascular endothelial growth factors (VEGFs) are critical inducers 
of angiogenesis in normal conditions or in diseases process such as 
cancer, psoriasis and orf [45,46]. The VEGF genes can extensively 
vary in terms of amino acid sequence in different strains of ORFV, 
whereas the structure and function of the VEGF proteins remain 
conservative [47]. ORFV recombinants with the variant VEGF genes 
disrupted showed markedly reduced infection symptoms [48,49]. In 
the process of ORF, VEGFs enhance the proliferation of endothelial 
cells and increase the vascular permeability which is facilitated by the 
viral replication and pustule formation [50]. Meanwhile, the virus 
enrichment at the scab lesions increases its survival opportunities 
and extends the survival period of ORFV [9]. Therefore, VEGFs are 
critical in ORFV for the contagious pustular symptoms.

Other factors inducing or inhibiting host cell apoptosis
Previous studies have reported that ORFV induced apoptosis in 

APCs, epidermis cells and lymph cells, mediated through the CD95 
pathway [51,52]. The activated ORFV dsRNA triggers the caspase 
cascade through caspase-8 activation and apoptosis [53]. This is one 
of the most important mechanisms with which ORFV eliminates the 
immune system at lesions and causes repeated infections. Some of 
the ORFV membrane proteins induce apoptosis in the host APCs 
and suppress the activation of T cells via CD95/CD95L pathway [51]. 
Intriguingly, ORFV can inhibit the apoptosis in the infected cells at 
the same time. It has been shown that the ORFV’s 125th gene can 
take advantage of cytochrome c pathway in order to inhibit apoptosis. 
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Furthermore, the protein encoded by this gene was reported to have 
a Bcl-2-like inhibitory effect on apoptosis [54]. The novel immune 
evasion mechanism mediated by this protein encoded by ORFV has 
not yet been discovered in other viruses.

Future perspectives
The details of the interaction mechanisms between ORFV and the 

host are still unclear. However, the studies on ORFV virulence factors 
and the mechanism of immune evasion could provide us with more 
information to further unravel the mechanisms of pathogenesis (Table 
1). It is already known that genes are highly variable at the terminal 
ends of ORFV genome and genetic recombination occurs between 
homologous sequences, as well as non-homologous sequences. In 
the process of viral mutation, sometimes some nonessential genes 
are deleted while some host genes can be captured and merged into 
the genome. This process could promote the evolution of some new 
adaptive subgroups. Under the selective pressure of immune systems, 
ORFV take advantage of such mutation strategy to get rid of the anti-
virus effects induced by the host’s Th1 cells. In practice, ORFV can be 
potentially used as a perfect vector or gene carrier [55-58]. It can be 
concluded that ORFV takes advantage of many of the host resources 
to fight back against the host immune system. For instance, ORFV 
develops a dual inhibitory or inducing mechanism against apoptosis 
that could be originally a powerful anti-infection tool. Unraveling 
the ORFV virulence factors and immune evasion mechanism, might 
contribute to the ORF etiology elucidation, as a new category of 
study in ORFV. It could potentially create a solid foundation for the 
development of new vaccines and medications.
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