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one mechanism that could explain their dual role in autoimmunity 
and pathogen clearance.

Two distinct Th17 cell populations are proposed to help explain 
the dual role of Th17 cells, those with a pathogenic role, termed Teff17, 
and those that are protective, termed Treg17 [12]. It is known that 
Teff17 cells require IL-23 as studies have shown that IL-23 and IL-
23R knockout mice are not susceptible to autoimmunity [13] and also 
lack GM-CSF, another pathogenic cytokine [14]. In contrast, Treg17 
development requires TGFβ, which can suppress GM-CSF as well as 
inducing IL-10 secretion to protect against tissue inflammation. In 
humans, Th17 skewing from Treg is less well understood, although 
one study has shown that Treg cells can also secrete IL-17 and express 
RORγt [15]. This information may be important in our understanding 
of the link between Th17 and Treg responses in health and disease. 

Pathogenic Role of Th17 Responses in 
Autoimmunity

Th17 cells were first documented to induce severe tissue 
inflammation in the context of autoimmunity. Many studies in mice 
have confirmed the pathogenic role of Th17 cells in experimental 
models of human diseases such as experimental autoimmune 
encephalitis (multiple sclerosis, MS) [16], collagen-induced arthritis 
(rheumatoid arthritis, RA) [17] and colitis (inflammatory bowel 
disease) [18]. In humans, the role of Th17 responses in autoimmunity 
has mostly been based on studies examining biomarker correlations 
with clinical disease. For example, MS patients were found to have 
elevated IL-17 levels in the serum and cerebrospinal fluid [19-21]. 
Recently, it was shown that the higher IL-17A levels in MS patients 
was correlated with neuronal glutamate excitotoxicity and associated 
downstream blood-brain barrier disruption [22]. This supports in 
vitro evidence that Th17 cells have a greater capacity to penetrate the 
blood brain barrier (BBB) and infiltrate the parenchyma of the central 
nervous system than Th1 cells [23]. Similarly for RA, Th17 cells were 
of higher frequency in patients compared to healthy controls [24,25] 
and the expression of IL-17, TNF and IL-1 predicted later joint 
destruction [26]. Furthermore, it was demonstrated that the activity 
of these Th17 cells was inhibited by Tregs from RA patients that were 
up regulated by anti-TNFα treatment [27]. Emerging data on the use 
of anti-Th17 based therapies such as secukinumab (anti-IL-17A) for 
psoriasis are promising [28] and larger clinical trials with these new-
generation therapies will be of paramount importance.  

Protective Role of Th17 Immunity
Some pathogens, particularly fungi and bacteria, are known to 

stimulate the production of IL-17, which is necessary to limit the 
spread of the organism. A number of studies have demonstrated 
that specific microbial ligands are able to induce cytokines such as 
IL-23 that drive Th17 development. Candida albicans, Klebsiella 
pneumoniae and Mycoplasma tuberculosis all require Th17 responses 

Introduction
The discovery and characterisation of T-helper 17 (Th17) 

lymphocytes was first described in 2005 [1,2]. This new lymphocyte 
subset challenged immunologists’ thinking of the day with respect 
to the immune system and the Th1/Th2 dogma described almost 
30 years earlier by Mosmann and Coffman [3]. These Th17 cells 
were shown to have a potent pro-inflammatory effect important 
in protection of the host against bacterial or fungal infections [4]. 
A number of studies have since demonstrated that Th17 cells, in 
addition to Th1 cells, can also drive pathological responses in a 
number of inflammatory and autoimmune diseases such as multiple 
sclerosis, rheumatoid arthritis and psoriasis. However, the role of 
Th17 cells and its signature cytokine, IL-17A is also recognised to 
play a critical role in pathogen clearance. In humans, the mechanisms 
driving Th17 cell differentiation and its regulation in host protection 
are poorly understood. In this perspective article, we discuss the 
functional plasticity of Th17 cells in the context of autoimmunity 
and infection and how these responses may be targeted by new-
generation therapies.

TH17 Differentiation Pathways 
In mice, differentiation of naïve T cells into Th17 cells occurs 

mainly in the presence of IL-6 and TGFβ, resulting in IL-17 (or IL-
17A) secretion and is characterised by the expression of the nuclear 
transcription factor RORγt [5] and STAT3 [6]. Although less well 
characterised in humans, this seems to require IL-1b and/or IL-23, 
the latter especially crucial for Th17 cell expansion, survival and 
stability [7]. In addition to IL-17A, Th17 cells also typically secrete 
IL-17F, IL-21and IL-22 under the transcriptional control of RORc 
(the human analog of RORγt) [8,9]. The function of Th17 cells is 
reciprocally regulated by another lymphocyte subset, the regulatory 
T cell (Treg) [10] which are either thymus-derived or induced in the 
periphery by TGFβ and express the transcription factor FoxP3 [11]. 
However, Th17 differentiation from naïve precursors is generally 
unstable compared to Treg and has been suggested to represent an 
intermediate phenotype that expresses both FoxP3 and IL-17 [12]. 
Moreover, conversion of Treg to Th17 cells in vitro is thought to be 
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for their clearance, primarily through the upregulation of neutrophil 
function [29-31]. Recently, Th17 responses have been shown to 
protect mice against nasopharyngeal colonisation by Streptococcus 
pneumoniae, a major global pathogen responsible for the deaths 
of more than 1 million infants worldwide every year [32]. This is 
interesting as it suggests that antibody-independent mechanisms 
of protection are important in the mucosa in contrast to serotype-
specific IgG, which is known to be the major correlate of protection 
against invasive pneumococcal disease.

The importance of IL-17-secreting Th17 cells in orchestrating the 
recruitment and activation of innate cells (neutrophils, monocytes 
and macrophages) in the upper respiratory tract and clearance of 
pneumococcal colonisation has been demonstrated [33,34]. This 
Th17 response was found to occur independently of antibodies 
and complement and was abrogated in the absence of the IL-17A 
receptor [35]. Importantly, high IL-17 expression was associated 
with low levels of pneumococcal nasopharyngeal carriage in both 
mice and young children [35-37] and stimulation of peripheral 
blood mononuclear cells ex vivo with pneumococcal pneumolysin 
generated substantial IL-17 [38,39]. In contrast, Tregs suppressed 
pneumococcal T cell responses in the mucosa, supporting the IL-
17-Treg counter-regulatory developmental pathway and providing 
a possible mechanism by which carriage is sustained [40]. More 
recently, higher lung Tregs were detected in mice resistant to 
pneumococcal pneumonia, highlighting the importance of TGFβ 
signalling in these animals [41]. However, further studies in humans 
are needed to confirm the protective effects of Tregs in the context of 
pneumococcal disease.

The discovery that Th17 immunity protects against pneumococcal 
colonisation underpinned the development of a Whole Cell Vaccine 
(WCV) that protects mice against colonisation, pneumonia and 
sepsis [42]. This vaccine comprises a non-encapsulated strain of 
pneumococcus that expresses multiple conserved proteins across 
many serotypes with the ability to stimulate CD4+ Th17-derived 
IL-17 responses [43]. This is a major advance in pneumococcal 

vaccinology due to its perceived ability to overcome many of the 
limitations of current pneumococcal conjugate vaccines such as 
serotype replacement and cost of the vaccine. The WCV has already 
completed a Phase 1 clinical study in healthy adults, demonstrating 
immunogenicity and an acceptable safety profile, leading to early-
stage clinical evaluation in Kenya and later Indonesia to provide 
evidence that this vaccine provides broad protection for children at 
greatest risk of the disease.

Conclusion
Our understanding of Th17 biology has advanced substantially 

over the last 10 years. In particular, the balance between suppressive 
Treg cells and inflammatory Th17 cells has long been considered 
an important aspect to preventing chronic inflammatory diseases, 
providing the impetus for development of novel therapeutic 
strategies aimed at augmenting Treg responses or blocking Th17 
immunity. However, Th17 cells also have protective roles and further 
studies to understand their differentiation from Treg precursors will 
be critical in this approach. Harnessing protective Th17 immunity 
without the risk of inducing chronic tissue inflammation is of 
paramount importance. New-generation vaccines such as WCV offer 
significant promise in the prevention of pneumococcal disease while 
development of various IL-17 inhibitors has shown some benefit 
against autoimmune diseases.
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