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Abstract

Children living with HIV constitute a population highly susceptible to a 
variety of opportunistic infections, among which oral candidiasis is the most 
common oral manifestation, despite its decreased prevalence after introduction 
of the treatment with highly active antiretroviral therapy. Among the pathogens, 
Candida albicans is responsible for most of the oral lesions in HIV-infected 
patients, which, after the initial adhesion and multiplication, starts to penetrate 
and invade host tissues. These mechanisms are related to the production and 
secretion of hydrolases such as proteases and phospholipases. Its diversity 
and abundance is influenced by host’s specific and non-specific components, 
such as lactoferrin, which is a multifunctional glycoprotein, from metalloproteins 
group, which performs iron transport. Lactoferrin is present in various body 
fluids such as saliva, tears, semen, sweat, colostrum, milk and nasal secretions 
in the innate immune system, especially for protecting the mucosal surface from 
microbial infections. This article aimed to review studies evaluating the role 
of salivary lactoferrin in the modulation of Candida spp infection and possible 
mechanisms of evasion used by Candida spp. in HIV-infected children. In 
conclusion, despite the fact that lactoferrin harbors a significant antifungal effect 
against Candida spp., the prevalence of oral candidiasis is still high among 
HIV-infected children, so it is important to investigate the evasion mechanisms 
involved on this fungus resistance to conventional treatments, in order to justify 
the high incidence of candidiasis among pediatric patients living with HIV. 
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Introduction
It is estimated that 34 million people worldwide were infected 

with the Human Immunodeficiency Virus (HIV) in 2012, and 
approximately 260,000 children have been killed by the disease, only 
in 2009 [1]. In Brazil, it is suspected that 700,000 people were living 
with HIV in 2013 and among them, 21,000 cases were children up to 
14 years old. Due to major advances in the disease control in the last 
decade, new cases continue to decline globally, but in some countries 
the national epidemic is still expanding [2].

The oral manifestations may be one of the first clinical indicators 
of HIV infection and are directly related to disease progression 
in children [3]. Since the mouth is readily accessible, these oral 
signals should be used to help diagnose, prevent and intervene in 
the HIV infection progression to AIDS [4]. Oral candidiasis is the 
most common oral manifestations in children, despite its decreased 
prevalence after the introduction of the treatment with highly active 
antiretroviral therapy (HAART). Candida albicans is the most 
frequently etiologic agent found in these lesions, but other species 
such as Candida tropicalis, Candida parapsilosis, Candida stellatoidea, 
Candida krusei, Candida glabrata, Candida guillermondii, and 
Candida dubliniensis have emerged as pathogens that cause fungal 
infections [5].

Candidaspp: Have several virulence factors that influence 
disease development, including adhesins (molecules that modulate 
the microorganisms adhesion to host cells and their ligands), and 
hydrolytic enzymes (such as phospholipase and protease) which 
contribute to tissue invasion, leading to a dysfunction or a disruption 
of the host cell membrane, promoting the adherence and colonization 
of Candida spp [6]. 

Saliva plays an important role in the oral health maintenance 
and, among its various components, salivary lactoferrin is essential 
to the individual, especially for protecting the superficial mucosa 
from microbial infections [7]. Studies showed that salivary 
lactoferrin can act as an inhibitor of infection due to Candida spp., by 
modulating this fungus growth in the oral cavity [8,9]. Nevertheless, 
immunocompromised patients due to HIV infection, still develop 
oral candidiasis more frequently, when compared to healthy patients. 
Given this context, this article aims to review studies evaluating 
the role of salivary lactoferrin in the modulation of Candida spp. 
infection and possible mechanisms of evasion used by Candida spp 
in HIV-infected children.

Background
The HIV infection in children

Human Immunodefiency Virus infection in children was first 
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described in 1983. Although the disease course have many similarities 
in pediatric patients with the disease progression in adults, some 
differences are found, as the spectrum of the disease, natural history, 
risk factors, form of transmission and seroconversion patterns. In 
85% of HIV pediatric cases, the virus transmission occurred through 
vertical transmission and can occur during pregnancy, childbirth or 
after birth through breastfeeding [10].

HIV infection manifests itself differently in adult and infant 
carriers, since pediatric patients enjoy a still immature immune system 
leading to a more severe deficiency of defense against infections 
[11]. HIV-related oral manifestations are observed, such as oral 
candidiasis, herpetic stomatitis, linear gingival erythema, gingivitis, 
hairy leukoplakia, parotid hypertrophy and aphthous ulcers. These 
oral lesions are reported as the first indicators of infection since they 
are directly related to the degree of patient’s immunosuppression, 
which directs the disease progression [10,12].

Oral candidiasis among HIV infected children 
Immunocompromised individuals, especially those infected 

with HIV, constitute a population that is highly susceptible to a 
variety of opportunistic infections. Among the pathogens, the 
fungi of the species Candida albicans are responsible for most of 
the oral lesions reported in HIV-infected patients. This fungus 
is normally present as commensal in the oral cavity of healthy 
individuals and also the gastrointestinal and genital tracts, but may 
take pathogenic characteristics in immunocompromised individuals, 
changing the harmony with the host [3]. Oral candidiasis is a strong 
immunodeficiency indicator and is considered the first clinically 
observable manifestation of the disease and, therefore, has a high 
predictive value in the development of AIDS [3,4,12]. However, a 
decrease of this infection is currently observed after the introduction 
of HAART, primarily due to an improved immune function of 
patients with increased levels of CD4 T-lymphocytes, thus making 
them less susceptible to opportunistic infections [11,13-15]. 

Species other than Candida albicans are also emerging as 
causative pathogens of fungal infections, such as Candida tropicalis, 
Candida krusei, Candida glabrata, Candida stellatoidea, Candida 
parapsilosis, Candida dubliniensis and Candida guillermondii [13]. 
The best recognized form of Candida spp. infection and most often 
found in HIV-infected patients is pseudomembranous candidiasis, 
characterized by the presence of an adherent white plaque on the 
mucosa. The erythematous candidiasis is also common, despite 
being clinically overlooked, and may occur on the tongue, hard 
palate region and labial commissures, yielding to angular cheilitis. 
Chronic hyperplastic candidiasis is the rarest type, as this condition 
is a candidiasis superimposed on a preexisting oral leukoplakia. The 
frequency and intensity of the damage is directly related to the degree 
of immunosuppression.

Candida spp. have the ability to survive as commensal in 
anatomical regions with distinct characteristics and under different 
environmental pressures, which gives them the ability to cause 
a greater variety of diseases [6]. This is related to the expression 
of different genes that promote cell wall synthesis in different 
environments, such as the bloodstream, where the pH is neutral, and 
in the vaginal canal, a region with acidic pH [16].

The transition from a commensal organism to a pathogen may 
be associated with prolonged use of antibiotics or corticosteroids 
and radiotherapy [17], as well as folic acid and iron deficiencies, 
xerostomia [18], poor oral hygiene, high-carbohydrate diet, gingivitis 
[19], reduced flow and salivary pH, decreased salivary components 
(lactoferrin, histatin 5, IgA), immune system failure such as in HIV 
infections [13,18,19], and the presence of carious lesions [5,15].

Candida albicans’ virulence factors
After the initial adhesion and multiplication, Candida albicans 

starts to penetrate and invade host tissues. These mechanisms are 
related to the production and secretion of hydrolases such as proteases 
and phospholipases [20]. These enzymes provide nutrients necessary 
for C. albicans maintenance by polymer breakdown and inactivation 
of host defense molecules [16], furthermore, damaging the lipid and 
protein constituents of host cells membranes [21].

Proteases
Microorganisms are capable of producing and secreting aspartic 

proteases to acquire nutrients. However, this biochemical ability 
provides specialized functions to pathogens in the infectious process, 
promoting host protein degradation, and play an important role 
during the fungal infection, such as adhesion, cell invasion, nutrition, 
evasion, cell proliferation and differentiation [22]. 

The major proteolytic activity described for Candida albicans 
refer to secretory aspartic proteases, which are involved in adhesion 
to host cells, degradation of host extracellular matrix proteins such 
as laminin, fibronectin, collagen, and defense proteins such as IgA, 
IgG, C3 and 9C3bi [22]. Matrix metalloproteinases (95kDa) are also 
capable of hydrolyzing the host subendothelial extracellular matrix 
components such as collagen type I and IV, laminin and fibronectin. 
This indicates that these enzymes might facilitate dissemination of C. 
albicans in tissue after its passage through the endothelial layer, thus 
allowing fungus invasion to target organs [23].

A greater protease expression and activity is observed among 
HIV-infected patients, when compared to patients without clinical 
signs of immunosuppression. De Brito et al [24] showed that C. 
albicans isolated from the oral cavity of HIV-infected children 
presented both metalloproteinase and secretory serine protease 
activity. C. guilliermondii isolates from HIV-infected patient showed 
protease activity at physiological pH, cleaving ability of a broad 
spectrum of protein substrates as lamina, fibronectin, serum albumin 
and human immunoglobulin G. However, the greatest expression of 
these enzymes does not lead to higher incidence of oral candidiasis 
[20]. Koga-Ito et al. [25] observed a greater expression of protease in 
oral C. albicans isolates from patients with denture prosthodontics 
with oral candidiasis. Although the expression of aspartic protease 
alone is not decisive for the establishment of infections caused by 
Candida spp., inhibitors of these enzymes are resources that can be 
used to prevent the onset and progression of these infections [26].

Phospholipases
Specific virulence factors are required for a pathogenic organism 

to penetrate the eukaryotic epithelial cell barrier of the human host. 
An important virulent attribute of C. albicansis its ability to produce 
extracellular phospholipases, which deteriorate phospholipid 
constituents of the host cell membrane, leading to cell disruption, 



Austin J HIV/AIDS Res 3(3): id1032 (2016)  - Page - 03

de Araújo Castro GFB Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

what facilitate cellular invasion. Barrett-Beeet al. [27] showed that C. 
albicans strains with the highest phospholipase activity exhibited the 
highest adherence to oral epithelial cells and a greatest ability to kill 
mice after intravenous inoculation, when compared with yeasts with 
a low degree of phospholipase activity.

As phospholipids are a foremost constituent of the host cell 
envelope, enzymes capable of hydrolyzing phospholipids i.e. 
phospholipases, are likely to play a critical role in host cell invasion. 
By cleaving phospholipids, candidal phospholipases undermine the 
membrane and cell lysis is the end result. Another important aspect 
is that filamentous candidal hyphae are critical in this process and, 
together with the extracellular phospholipases, facilitate the yeast 
invasion of the host tissues. Therefore, both physical or enzymatic 
activities, or a combination of both, are associated with the 
pathogenesis of candidal disease [28].

Host defense: salivary lactoferrin 
The oral cavity surface is heavily colonized by microorganisms. 

The microbiota diversity and abundance is influenced by host’s 
specific and non-specific components, such as antimicrobial proteins 
associated with the secretory immune system (lysozyme, lactoferrin, 
histatin-5, mucin, cystatin and agglutinin). Most of these proteins 
may inhibit the metabolism and adherence of these microorganisms 
in vitro [29], while maintaining and protecting the integrity of the 
oral mucosa [30]. Generally, the antimicrobial activity of these 
components depends on the disruption of the bacterial and fungal 
cells membranes [31], suppression of mitochondrial respiration [32], 
glucose utilization [33] or activation of neutrophils and macrophages 
[30].

Lactoferrin is a multifunctional glycoprotein, from metalloproteins 
group, which belongs to the transferrin family. It has a molecular 
weight of 80kDa and a porphirin core similar to hemoglobin, 
performing iron transport [34]. Lactoferrin is expressed in mucosa, 
endometrium, vaginal epithelium, prostate and seminal vesicle [35]. 
Is present in various body fluids such as saliva, tears, semen, sweat, 
colostrum, milk and nasal secretions in the innate immune system 
of the individual, especially for protecting the mucosal surface from 
microbial infections [35-37].

This glycoprotein possesses many properties: bacteriostatic 
and bactericidal activities, anti-inflammatory, fungicides, antiviral 
and antioxidant [38]. The main lactoferrin action mechanisms are 
sequestering ferrous ions, leading to elemental iron deprivation 
necessary for yeast metabolism [39], activation of the intracellular 
autolytic enzyme system subsequent to adsorption of lactoferrin [40], 
structural changes induced in the cell walls of the yeast and increasing 
the number of natural killer cells and T cells in peripheral blood by 
increasing the phagocytic activity of neutrophils [41].

Lactoferrin is considered a cytokine, responsible for coordinating 
the human cellular response, acting in the maturation and activation 
of macrophages and neutrophils. Its deficiency cause suppression of 
the immune system and its excess causes an exacerbated immune 
response [42]. Polymorphonuclear neutrophils are rich in lactoferrin, 
which act as a protective factor against various infections [43]. 
Lactoferrin can directly regulate the inflammatory response [7] and 
may bind to bacterial endotoxin [36,44]. Its antimicrobial activity 

is attributed to the property to chelate the iron ion, depriving thus 
microorganisms of its essential elements [29,44].

Whole saliva concentration of lactoferrin in adults is 
approximately 2.95 to 10.49 mg/L [45]. HIV-infected adults exhibit 
a significant reduction in the secretion of salivary glands [46], and 
significant variations in lysozyme concentrations and lactoferrin in 
the saliva occur during disease progression [9,47].

Although HIV-infected children shows higher concentration 
of salivary lactoferrin when compared to patients without clinical 
evidence of immunosuppression, oral candidiasis is still present and 
in high prevalence among this special patients [47].

The antifungal activity of lactoferrin was first reported by 
Kirkpatrick et al., in 1971 [8]. In combination with fluconazole, it 
was used to reduce the amount of drug needed to reach inhibitory 
concentration to eliminate clinical isolates of Candida spp., thus 
suggesting that lactoferrin may have a potential use in combination 
with drugs against resistant infections by Candida spp [48].

Lactoferrin evasion strategy of Candida albicans 
C. albicans has developed an excess of iron acquisition systems 

[49]. The siderophore uptake system, via Sit1/Arn1 (siderophore iron 
transport 1), is used to steal iron from siderophores produced by other 
microorganisms without producing its own siderophores [49,50], so 
C. albicans can further bind host ferritin with the hyphae-associated 
adhesion and invade host cells [49-51]. Another iron acquisition 
system is a reductive system, with its large gene families of reductases, 
oxidases and iron permeases [49], that mediates the iron acquisition 
from host ferritin, transferrin or, if available, free iron from the 
environment. C. albicans can also use heme-iron uptake system from 
host hemoglobin and hemoproteins by first expressing haemolysins 
that disrupt red blood cells [49,50]. Subsequently the iron acquisition 
is mediated by the heme-receptor gene family members RBT5, 
RBT51, CSA1, CSA2, and PGA7 (RBT6) [50].

Candida spp. can use these systems to produce resistant infections. 
As a treatment alternative for Candida infections, synergistic 
inhibitory effects on Candida growth were found for combinations 
of lactoferrin and fluconazole or amphotericin B. In HIV-infected 
patients expressing oral candidiasis infections resistant to conventional 
antifungal treatments, an alterantive is to oral mouthwash containing 
lactoferrin and lysozyme in combination with an antifungal agent as 
itraconazole. This indicates that for treatment of oral Candidiasis a 
formulation containing lactoferrin seems appropriate; results may 
be optimized if the formulation is provided with buffer capacity to 
attain pH 7.5 in the mucosal fluid. The synergistic effects between 
lactoferrin and ‘standard’ antifungals indicate that combinations 
should be considered in such a formulation [52].

Another alternative against systemic infection caused by 
Candida albicans is treatment with orally administered lactoferrin. 
Samaranayake et al. [9] demonstrated the effectiveness of lactoferrin 
against oral candidiasis, which has been obtained by means of food 
supplements. This study was made with bovine milk lactoferrin, 
suggesting that the cow’s milk can be used as a supplement to support 
antifungal chemotherapy without side effects. Also, bovine lactoferrin 
has beneficial effects on oral candidiasis, and may be used as a dietary 
supplement, supporting the antifungal chemotherapy and improving 
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the quality of life of patients living with HIV without side effects since 
it is a endogenous protein.

Conclusion
Despite lactoferrin presents a significant antifungal effect against 

Candida spp., the prevalence of oral candidiasis is still high among 
HIV-infected patients. Thus, it is important to investigate the evasion 
mechanisms involved on this fungus resistance to conventional 
treatments, in order to justify the high incidence of candidiasis 
among pediatric patients living with HIV. A promising alternative is 
the combined use of lactoferrin and antifungals for the treatment of 
Candida spp. infections. It is noteworthy, therefore, the important role 
of the pediatric dentist in the hospital health team for early diagnosis 
of candida infections in these immunocompromised patients, since 
mouth is the first location of appearance of these lesions, which are 
closely related to the progression of HIV infection.
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