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Abstract

Exposure to low or moderate doses of Lipopolysaccharides (LPS) renders the 
host tolerance to a subsequent lethal dose of LPS, which is termed as endotoxin 
tolerance. It is characterized as the decrease in production of pro-inflammatory 
cytokines and the increase in production of anti-inflammatory mediators in 
response to subsequent LPS challenge. Whether other environmental factors 
also trigger endotoxin tolerance remains unclear. Both epidemiologic and 
experimental studies have provided a link between particulate matters and 
human health. Here, we speculated on the effect of fine particles priming on 
endotoxin tolerance in a mouse model.
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differentiation factor 2, triggering a powerful immune reaction 
[13]. This inflammatory response is tightly regulated and can show 
different forms, depending on the dose. Exposure to low or moderate 
doses of LPS renders the host tolerance to a subsequent lethal dose 
of LPS, which is termed as endotoxin tolerance. It is characterized 
as the decrease in production of pro-inflammatory cytokines such 
as tumor necrosis factor α, Interleukin (IL)-6 and IL-1β, and the 
increase in production of anti-inflammatory mediators such as IL-
10 in response to a second LPS challenge [14, 15]. The alteration of 
cytokine profile protects LPS-primed hosts against a normally lethal 
dose of subsequent LPS challenge. Nevertheless, whether other 
environmental factors also trigger endotoxin tolerance remains 
unclear. Here, we speculated on the effect of PM2.5 priming on 
endotoxin tolerance in a mouse model.

Materials and Methods
Animal care

C57BL/6 mice (6-8 weeks old) were obtained from Jackson 
Laboratories (Bar Harbor, ME). Animals were maintained at 21°C 
and exposed to a 12-h light, 12-h dark cycle with free access to water 
and food. The protocols and the use of animals were approved by and 
in accordance with the Ohio State University Animal Care and Use 
Committee.

Intranasal exposure to PM2.5

Mice were exposed to PM2.5 by intranasal instillation, which is 
an effective and noninvasive technique in toxicity studies [16,17]. 
This instillation technique consists in deliver drop-wise the particle 
suspension or the vehicle to the nares using a micropipette, while 
the mouse is in a supine position. Animals were lightly anesthetized 
with 2% isoflurane and intranasally instilled with 20 µl of free-particle 
saline or PM2.5 (0.5 μg/μl) saline, three times per week for eight weeks.

Survival study
Endotoxic shock was induced by peritoneal injection of LPS (20 

µg/g; Escherichia coli serotype 055.B5; Sigma-Aldrich) and mice (n = 
10) were monitored up to 84 hours. Survival curves were compared 

Abbreviations
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Introduction
The inhalation of toxic ambient particles is a worldwide public 

health problem; both epidemiologic and experimental studies have 
provided compelling evidence supporting the association between 
Particulate Matter (PM) and human diseases, including mortality and 
hospital admissions [1], cardiovascular diseases [2, 3], type 2 diabetes 
[4,5], asthma and chronic obstructive pulmonary disease [6,7], and 
non-alcoholic fatty liver disease [8]. Inflammatory response has 
been implicated as the key mechanism of PM-mediated healthy 
problems. Current evidence suggests that inhaled particles trigger 
innate immune signals in the lung through interacting with Toll-Like 
Receptors (TLRs), releasing cytokines into circulation and causing 
systemic inflammatory response [9]; and that direct penetration of 
leachable components such as reactive oxygen species and stable 
organic compounds into circulation also contributes to systemic 
inflammatory response [10].

Ambient particle pollution is a mixture of microscopic solids 
and liquids droplets suspended in air; it consists of a number of 
components, including acids, organic chemicals, metals, soils or 
dust particles, and allergens. According to its aerodynamic diameter, 
PM is classified into coarse (10 to 2.5 μm; PM10), fine (<2.5 μm; 
PM2.5), and ultrafine (<0.1 μm; PM0.1) particulate matters. The size 
of particles is directly linked to their potential for causing health 
effects. It is believed that fine particulate matters pose the greatest 
health problems, because they hold the potential to get and deposit 
deep into the lung, and may even penetrate into the bloodstream. PM 
composition and size together influence its adverse effects on public 
health [11,12].

Endotoxin, also known as Lipopolysaccharides (LPS), is a 
structural component of the gram-negative outer membrane. 
Leukocytes recognize LPS via TLR4 in the presence of myeloid 
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using Kaplan–Meyer log-rank test. All tests were conducted at the 
two-sided 5% significant level.

Results
All mice treated with saline without LPS injection survived; one 

mouse exposed to PM2.5 without LPS injection died (p > 0.05 vs. 
saline). LPS injection induced a significant decrease in survival rate 
(p < 0.01 vs. saline); pre-exposure to PM2.5 induced tolerance to death 
from a subsequent lethal LPS dose, however, these two survival curves 
were not significantly different (p > 0.05 vs. LPS) (Figure 1).

Hypothesis and evaluation
Our preliminary data showed an evident trend of survival curves 

between PM2.5-exposure and PM2.5 priming plus LPS treatment, 
suggesting that PM2.5 priming may cause endotoxin tolerance in mice. 
To verify this hypothesis, a study with larger sample size is needed. 
Sample sizes are determined using a two-sided, 0.05-significance 
level log rank test with 80% statistical power and equal allocation. 
The log-rank test is a popular nonparametric test to compare the 
survival distributions of two groups. Let i =1, i be the distinct times 
of observed events. For each time i, let N1i and N2i be the numbers 
of subjects at risk at the start of time i in the two groups. Define Ni 
= N1i + N2i. Let O1i and O2i be the observed numbers of events in the 
groups respectively at time i, and define Oi =O1i + O2i. Under the null 
hypothesis that the two groups have the same survival function, the 
distribution of the number of events in the first group has expected 
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Under the null hypothesis, it follows approximately a standard 
normal distribution. Based on our preliminary study, 60% of mice 
survived after 84 hours in PM2.5 priming plus LPS treatment group, 
while only 30% of mice survived in LPS treatment group. Assuming 
a constant hazard model and using a log rank test, we would need 
40 mice in each group to detect the difference in survival curve. The 

sample size calculation is conducted using SAS proc power (SAS 9.2, 
SAS Institute Inc. Cary, NC).

To verify our findings and mimic the effects of “real world” air 
pollution, we will repeat this experiment using Versatile Aerosol 
Concentrator and Enrichment System, which is used to generate 
ambient air pollution murine models for in vivo toxicological studies. 
This system has been well introduced by Chen Lab at New York 
University [18-20]. The system in our lab is quite similar. Mice (n = 
40) will be exposed to either filtered air or concentrated ambient PM2.5 
for 6 hours/day, 5 days/week for 8 weeks. The exposure protocol and 
PM2.5 compositions have been reported in our previous studies [4, 
21-23]. After exposure, endotoxin shock will be induced as previously 
described.

How may PM2.5 priming lead to endotoxin tolerance in mice? 
Based on our knowledge of this compound, we speculate that at 
several mechanisms PM2.5 may actively regulate endotoxin tolerance 
(Figure 2). On the one hand, PM2.5 is a mixture of various chemical 
and biological constituents, including a low dose of LPS [24]. In 
our experiment, pre-exposure to PM2.5 may prime animals with 
lose dose of LPS, preventing death from a subsequent lethal dose. 
On the other hand, PM2.5 may induce endotoxin tolerance through 
regulation of heat-shock response. It has been shown that PM2.5 
exposure significantly increases the expression of Heat-Shock Protein 
(HSP) 70 [25,26]. HSP70, a prominent chaperone protein, functions 
individually or as part of larger heterocomplexes to maintain protein 
homeostasis in response to various stress stimuli [27]. In addition, 
HSP70 exhibits anti-inflammatory effect and inhibits the release of 

Figure 1: PM2.5 priming attenuates LPS-induced mortality in wild-type mice. 
Mice (n = 10) were exposed to 20 µl of free-particle saline or PM2.5 (0.5 μg/
μl) saline, three times per week for eight weeks by intranasal instillation. After 
exposure, endotoxic shock was induced by peritoneal injection of LPS (20 
µg/g), and mice were monitored up to 84 hours for survival study. Survival 
curves were compared using Kaplan–Meyer log-rank test. All tests were 
conducted at the two-sided 5% significant level. LPS: Lipopolysaccharides; 
PM2.5: Fine particulate matters.

Figure 2: Proposed mechanisms of PM2.5-mediated endotoxin tolerance. 
PM2.5 consists of a number of components, including acids, organic chemicals, 
metals, ROS and low dose of LPS. On the one hand, pre-exposure to PM2.5 
may prime animals with possible low dose of LPS and contribute to endotoxin 
tolerance via inhibition of IκBα degradation. On the other, LPS and other 
components such as ROS, metals and organic chemicals may activate 
heat-shock response via binding to DAMPs, up regulating the expression 
of HSP70. It has been shown that HSP70 interrupts NF-κB signaling and 
inhibits pro-inflammatory cytokine release by stabilizing the complex between 
NF-κB and its inhibitor IκBα. These signaling pathways may contribute to 
particle-mediated endotoxin tolerance. PM2.5: Fine Particulate Matters; LPS: 
Lipopolysaccharides; ROS: Reactive Oxygen Species; TLR4: Toll-Like 
Receptor 4; DAMPs: Damage-Associated Molecular Patterns; IKKs: IκB 
kinases; IκBα: κB inhibitor α; NF-κB: Nuclear Factor-κB; HSP: Heat-Shock 
Protein; HSF: Heat-Shock Factor; TNF-α: Tumor Necrosis Factor-α; and IL: 
Interleukin.



Austin J Environ Toxicol 1(1): id1006 (2015)  - Page - 03

Sun Q Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

pro-inflammatory cytokines, e.g. IL-6, IL-1β and tumor necrosis 
factor α, through interaction with nuclear factor-κB complex [28-30].

Potential implications
The adverse effects of PM air pollution have robustly been 

investigated since global air quality becomes worse, particularly in the 
developing countries [31,32]. Although PM-induced inflammation 
is implicated as one of potential mechanisms, the modulated effects 
of PM on immune system, particularly in response to subsequent 
infection, could be more complicated than we thought. If our 
hypothesis is to be confirmed, it may refresh our knowledge about 
this compound and its inflammatory effects.

Additionally, we want to highlight the use of log-rank test as a 
suitable tool to determine the sample size and evaluate the data 
fidelity for survival study. The most considerable advantage of this 
test is that it does not require the knowledge about the shape of the 
survival curve or the distribution of survival times in advance [33].
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