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Abstract

Insulin resistance is the fundamental cause of many diseases such as 
obesity, diabetes, breast cancer, cardiovascular diseases. It leads to many 
abnormalities which are correlated with metabolic syndrome. The report derives 
the association of insulin with glucose, Body Mass Index (BMI), age & breast 
cancer biomarkers. It is derived herein that mean insulin is positively associated 
with BMI (P<0.0001), leptin (P=0.0009), homeostasis model assessment score 
insulin resistance (HOM-IR) (P<0.0001), glucose*resistin (P<0.0001), monocyte 
chemoattractant protein-1 (MCP-1)*age (P=0.0909), glucose*adiponectin 
(P=0.0424), HOMA-IR*MCP-1 (P<0.0001), while it is negatively associated 
with resistin (P<0.0001), MCP-1 (P=0.0264), glucose (P=0.0665), adiponectin 
(P=0.0783), BMI*HOMA-IR (P<0.0001), glucose*HOMA-IR (P<0.0001), 
leptin*adiponectin (P=0.0713), age (P=0.1039) (partially). Insulin levels variance 
is higher for breast cancer patients (P=0.0003) than normal. It is negatively 
associated with age (P=0.0165), glucose*MCP-1 (P=0.0003), leptin (P=0.0828), 
while it is positively associated with HOMA-IR (P<0.0001), MCP-1 (P=0.0014). 
Insulin plays a very complex associations with age, BMI, glucose and breast 
cancer markers, which is shown in the report. 

Keywords: Body mass index; Breast cancer; Glucose; HOMA-IR; Insulin; 
Resistin; Non-constant variance

Introduction
Insulin Resistance (IR) is a primary legislator of glucose 

homeostasis, and it is determined by environmental and genetic 
factors. IR leads to impaired glucose tolerance, and it plays a principal 
pathophysiological role in the advancement of diabetes [1-3]. The 
insulin growth factor 1 receptor and insulin receptor play the main 
roles in the etiology of both breast cancer and diabetes mellitus [4-
8]. Approximately 10% of breast cancer patients have pre-existing 
diabetes mellitus, that may affect breast cancer prognosis, progression 
and treatment options [5-8]. Insulin appears to be an important factor 
linking between diabetes and breast cancer [9,10]. Insulin resistance 
is associated with many metabolic syndrome. An increased body fat 
is mainly associated with many diseases such as hypertension, type 2 
diabetes mellitus, and dyslipidaemia [11-13]. IR is highly associated 
with obesity (or BMI) and HOMA-IR [14,15].

Present medical literature shows that insulin is associated with 
many diseases, risk factors and disease biomarkers. Most of the earlier 
findings have been derived based on simple correlation coefficient, 
Logistic regression, simple and multiple regression analysis which 
are not appropriate statistical approach always for modeling of a 
heterogenous multivariate data set. Earlier findings invite many 
doubts and debates. For a multivariate data set with non-constant 
response variance, the associations of many covariates with the 
response can only be examined based on appropriate modeling. 
There is a very little study regarding the associations of insulin with 
Breast Cancer (BC) biomarkers along with biological factors using 
proper probabilistic modeling. The report examines the associations 
of insulin with BC biomarkers, age, BMI and glucose based on joint 
mean & dispersion probabilistic modeling. It examines the following 
hypotheses. What is the relationship of insulin with age, BMI, glucose 
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& BC biomarkers? What are the associations of insulin with the age, 
BMI, glucose & BC markers? What are the effects of insulin on BMI, 
glucose & BC markers? These queries have been searched in the report 
with a real data set of 116 women along with 10 study characters. 

Material and Methods 
Materials

Study design and participants: At the beginning of the study a 
total 154 Portuguese women were recruited from the Gynaecology 
Department of the University Hospital Centre of Coimbra (CHUC) 
between 2009 and 2013, who were newly diagnosed with BC. The 
recruited women had been divided into four exploratory groups based 
to their BMI and the presence or absence of BC. These groups are: (1) 
Control Without Over Weight (CTWOW) with BMI <25kg/m2, n = 
29; (2) Control With Over Weight (OW) (CTOW) with BMI>25kg/
m2, n = 48; (3) Breast Cancer WOW (BCWOW) with BMI<25kg/ 
m2, n = 30; and (4) Breast Cancer OW (BCOW) with BMI>25kg/ m2, 
n = 47. The CTWOW group were selected at the Internal Medicine 
Department during annual check-up of the aforementioned hospital. 
Women CTOW group were also selected at this Department, in 
their first Nutrition consultation. These women were selected in the 
study if they had never been diagnosed with family history of BC or 
malignant disease.

Breast cancer patients without & with over weight groups were 
selected and surgically operated at the Gynaecology Department 
of CHUC. These patients had been newly diagnosed with BC from 
a positive mammography and had histologically confirmed breast 
cancer without no prior cancer treatment. These selected patients 
were free from any infection or any other acute disease at the study 
enrolment time. The same physician collected anthropometric 
data (height, weight) and all the clinical information (personal, 
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family medical history) each of the selected patient during the first 
consultation. Then, fasting blood samples were procured by venous 
puncture for biochemical examinations, which was conducted by the 
same physician, and immediately they were transferred to the same 
hospital Laboratory of Physiology of the Faculty of Medicine. The 
study design was approved by the CHUC Ethical Committee, and 
all recruited participants gave their written aware consent prior to 
joining the study. Finally, a total of 116 (64 with BC & 52 control 
participants) was selected in the current study, and the rest 38 women 
were removed from the study due to having BMI>40kg/m2.

The data set can be obtained from UCI Machine Learning 
Repository, and its detailed statement is given in [16,17]. For current 
using of the factors & covariates in the article, these are restated 
as BMI (kg/m2), Age, HOMA-IR, Glucose (mg/dL) (GLUCO), 
Insulin (μU/mL) (INSUL), Adiponectin (μg/mL) (ADIPO), MCP-1, 
Leptin(ng/mL) (LEPTI), Resistin (ng/mL) (RESIS), Types of Patient 
(TYOPA) (1=healthy controls; 2=patients). Some related studies are 
given in [18-20].

Statistical methods
The data given in [16,17] is a multivariate data set. The report 

aims to derive the relationship of insulin with age, BMI, glucose and 

BC biomarkers. The interested response herein is insulin which is 
non-constant variance, positive continuous non-normally distributed 
random variable. It can simply be modeled by suitable transformation, 
if the variance is stabilized with the transformation. But the response 
insulin is not stabilized by any suitable transformation. Therefore, 
insulin can be modeled by

Log-normal and Gamma Joint Generalized Linear Models 
(JGLMs), which are elaborately given in [21-24]. These are not 
restated herein, and the interested readers may visit [20,23].

Statistical & graphical analysis
The random variable insulin is considered as the dependent 

variable and the rest others are considered as the independent 
variables. As the interested response insulin is not stabilized by any 
suitable transformation, so it has been modeled by both Log-normal 
and Gamma JGLMs. The final models have been accepted depending 
on the lowest Akaike Information Criterion (AIC) value (within each 
class), which minimizes both the squared error loss and predicted 
additive errors [25]. Some insignificant effects or partially significant 
effects are included in both mean and dispersion models (Table 1) 
due to marginality rule [26], or for better model fitting [25,27]. The 
analyses outcomes are presented in Table 1, which shows that Gamma 

Model Variables
Gamma fit Log-normal fit

Estimate s.e. t-value p-value Estimate s.e. t-value p-value

Mean

Intercept 0.66861 0.22661 2.95111 0.00391 1.35501 0.32831 4.1271 <0.0001

Age -0.00282 0.00171 -1.64111 0.10391 -0.00341 0.00231 -1.4701 0.14471

HOMA-IR 1.32401 0.09211 14.3791 <0.0001 0.88281 0.08921 9.9021 <0.0001

MCP-1 -0.00041 0.00021 -2.25411 0.02642 -0.00051 0.00021 -2.4641 0.01541

Age* MCP-1 0.00012 0.00012 1.70711 0.09092 0.00012 0.00011 2.2161 0.0291

BMI 0.02951 0.00492 5.97211 <0.0001 0.01892 0.00591 3.2001 0.00181

BMI*HOMA-1R -0.01572 0.00262 -6.00411 <0.0001 -0.00772 0.00261 -2.9771 0.00371

RESIS -0.03291 0.00372 -8.80321 <0.0001 -0.03172 0.00512 -6.1751 <0.0001

GLUCO -0.00282 0.00152 -1.85521 0.06651 -0.00591 0.00262 -2.3191 0.02241

GLUCO*HOMA-1R -0.00471 0.00021 -23.6892 <0.0001 -0.00371 0.00022 -19.0711 <0.0001

ADIPO -0.02711 0.01521 -1.77921 0.07831 -0.06671 0.02492 -2.6791 0.00862

GLUCO*ADIPO 0.00042 0.00021 2.05421 0.04261 0.00081 0.00032 2.9331 0.00422

GLUCO*RESIS 0.00032 0.00011 9.20721 <0.0001 0.00031 0.00011 6.4592 <0.0001

HOMA-1R*MCP-1 0.00012 0.00011 7.27921 <0.0001 0.00011 0.00011 6.6542 <0.0001

LEPTI 0.00481 0.00141 3.40921 0.00091 0.00792 0.00211 3.8012 0.00022

LEPTI*ADIPO -0.00021 0.00012 -1.82321 0.07131 -0.00032 0.00021 -1.5202 0.13172

Disper-
sion

Intercept -3.75501 1.43242 -2.62211 0.01011 -3.45532 2.32181 -1.4882 0.13992

Age -0.02151 0.00882 -2.43911 0.01651 -0.03522 0.00981 -3.5742 0.00052

GLUCO 0.00371 0.01531 0.24411 0.80772 0.02822 0.02471 1.1422 0.25622

MCP-1 0.00701 0.00211 3.29211 0.00142 0.00272 0.00372 0.7292 0.46772

GLUCO*MCP-1 -0.00011 0.00011 -3.76011 0.00032 0.00012 0.00012 -1.1312 0.26081

HOMA-IR 0.41681 0.06001 6.94312 <0.0001 - - - -

LEPT I -0.01401 0.00801 -1.75212 0.08281 -0.01041 0.01091 -0.9492 0.34491

TYOPA 1.16521 0.30821 3.78112 0.00032 1.33111 0.36261 3.6712 0.00041

AIC 318.773 396.0

Table 1: Insulin analysis results for mean and dispersion models from Log-Normal & Gamma fit.
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fit (AIC= 318.773) is better than Log-normal fit (AIC=396.0). Note 
that in Log-normal dispersion model HOMA-IR is aliased, which is 
not included in that model.

Data produced probabilistic model should be tested by model 
checking tools before accepting as the valid model. The derived 
Gamma fitted insulin model (Table 1) has been examined by model 
diagnostic plots in Figure 1. Figure 1(a) presents the absolute insulin 
Gamma fitted residuals plots against the fitted values, where they all 
are located at a point randomly, except a smaller absolute residual 
value located at the right boundary. Therefore, the right tail of Figure 
1(a) is decreasing. Figure 1(b) displays the mean insulin Gamma 
fitted normal probability plot (Table 1), which shows no lack of fit. 
Thus, Figure 1(a) and Figure 1(b) have proved that Gamma fitted 
models are approximately true insulin model (Table 1).

Results 
The insulin analysis outputs for both the Gamma & Log-normal 

fitted models are displayed in Table 1. The following outcomes are 
related to the Gamma fitted models (Table 1). It is derived herein 
that mean insulin is positively associated with BMI (P<0.0001), 
leptin (P=0.0009), homeostasis model assessment score insulin 
resistance (HOM-IR) (P<0.0001), glucose*resistin (P<0.0001), 
monocyte chemoattractant protein-1 (MCP-1)*age (P=0.0909), 
glucose*adiponectin (P=0.0424), HOMA-IR*MCP-1 (P<0.0001), 
while it is negatively associated with resistin (P<0.0001), MCP-
1 (P=0.0264), glucose (P=0.0665), adiponectin (P=0.0783), 
BMI*HOMA-IR (P<0.0001), glucose*HOMA-IR (P<0.0001), 
leptin*adiponectin (P=0.0713), age (P=0.1039) (partially). Insulin 
levels variance is higher for breast cancer patients (P=0.0003) 
than normal. It is negatively associated with age (P=0.0165), 
glucose*MCP-1 (P=0.0003), leptin (P=0.0828), while it is positively 
associated with HOMA-IR (P<0.0001), MCP-1 (P=0.0014).

Insulin Gamma fitted mean ( ) model (Table 1) is  = 
exp(0.6686+1.3240 HOMA-IR–.0028 Age–0.0004 MCP-1+0.0001 
µMCP-1*Age+0.0295 BMI–0.0157 HOMA-IR*BMI-0.0329 
RESIS-0.0028 GLUCO–0.0047 GLUCO*HOMA-IR–0.0271 
ADIPO+0.0004 GLUCO*ADIPO+0.0003 GLUCO*RESIS+0.0001 

HOMA-IR*MCP-1+0.0048 LEPTI-0.0002 LEPTI*ADIPO), and 
the Insulin Gamma fitted dispersion ( ) model (Table 1) is 
= exp(–3.7550+0.0037 GLUCO–0.0215 Age+0.007 MCP-1–0.0001 
GLUCO*MCP-1+0.4168 HOMA-IR–0.014 LEPTI+1.1652 TYOPA).

The mean & dispersion relationship of insulin are displayed by 
the above two equations. It is noted that mean insulin is explained 
by Age, BMI, HOMA-IR, MCP-1, MCP-1*Age, HOMA-IR*BMI, 
RESIS, GLUCO, GLUCO*HOMA-IR, ADIPO, GLUCO*ADIPO, 
GLUCO*RESIS, HOMA-IR*MCP-1, LEPTI, LEPTI*ADIPO, while 
its dispersion is explained by Age, MCP-1, GLUCO*MCP-1, HOMA-
IR, LEPTI, TYOPA.

Discussion
Final insulin level analysis outcomes (Table 1), mean & dispersion 

models are given above. From mean insulin model, it is observed 
that insulin level is negatively associated with glucose (P=0.0665) 
& age (P=0.1039) (partially), concluding that it decreases as glucose 
level increases, or also at older ages. Therefore, at older ages, glucose 
level increases as it is negatively associated with insulin. So, type 2 
diabetes is frequently observed at older ages. Insulin is positively 
associated with HOMA-IR (P<0.0001), indicating that it increases 
as HOMA-IR increases. Equivalently, HOMA-IR can be considered 
as an alternative measure of insulin. It is negatively associated with 
MCP-1 (P=0.0264), interpreting that it decreases as MCP-1 increases. 
Note that MCP-1 is higher for BC patients, which have lower insulin 
levels, and they may be type 2 diabetes also. Both age and MCP-1 
are negatively associated with insulin, while their joint interaction 
effects Age*MCP-1(P=0.0909) is positively associated with insulin, 
indicating that it increases as their joint effect increases. BC patients 
with older ages have higher MCP-1, but may not have always lower 
insulin level as the joint interaction effect Age*MCP-1 increases 
insulin level. So, older BC patients should not always be type 2 
diabetes. Insulin is positively associated with BMI (P<0.0001) and 
HOMA-IR (P<0.0001), while their interaction effect BMI*HOMA-IR 
(P<0.0001) is negatively associated with insulin. Again, it is negatively 
associated with MCP-1 (P=0.0264), resistin (P<0.0001), glucose 
(P=0.0665), adiponectin (P=0.0783), and positively associated with 
HOMA-IR, but the interaction effects HOMA-IR*MCP-1 (P<0.0001), 

Figure 1: For the joint Gamma fitted insulin level models (Table 1), the (a) absolute residuals plot with respect to the fitted values, and (b) the normal probability 
plot for the mean model.
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glucose*resistin (P<0.0001), glucose*adiponectin (P=0.0424) are 
positively associated with it, while glucose*HOMA-IR (P<0.0001) 
is negatively associated with it. On the hand leptin (P=0.0009) is 
positively associated with insulin, while adiponectin is negatively 
associated with it, but their joint interaction effect leptin*adiponectin 
(P=0.0713) is negatively associated with it.

Gamma fitted insulin variance model shows that Insulin Levels 
Variance (ILV) is positively associated with TYOPA (P=0.0003), and 
negatively associated with age (P=0.0165), indicating that it is higher 
for BC women and older patients, than normal and younger. ILV is 
directly associated with HOMA-IR (P<0.0001), MCP-1 (P=0.0014), 
while it is inversely associated with glucose*MCP-1 (P=0.0003) 
and leptin (P=0.0828) (partially). These indicate that ILV increases 
as HOMA-IR, or MCP-1 increases, or leptin, or glucose*MCP-1 
decreases. Best of our knowledge, all the above associations related to 
insulin variance have not been reported in the earlier studies.

Interpretations of the present derived insulin analysis results 
have been presented above. The associations and effects of insulin on 
breast cancer biomarkers, BMI, age and glucose are described above. 
The report focuses that insulin level increases if BMI, or HOMA-
IR, or leptin, Age*MCP-1, GLUCO*ADIPO, GLUCO*RESIS, 
HOMA-IR*MCP-1 increases, or MCP-1, or adiponectin, or 
resistin, or glucose, or BMI*HOMA-IR, or GLUCO*HOMA-IR, or 
LEPTI*ADIPO decreases. The present association types of (insulin 
& BMI), (insulin & HOMA-IR), (insulin & glucose) and (insulin & 
leptin) are supported by earlier articles [1,2,6,7,13-15]. Note that 
mean insulin level is not significantly higher for breast cancer women 
than normal. It was doubt in earlier findings [6-10]. Herein it is 
derived that insulin variance is higher for BC women than normal. 
The explanatory factors for insulin variance have not been focused in 
any earlier article.

Sirtuin 1 (SIRT1) is a prototype mammalian NAD(+)-dependent 
protein deacetylase that has emerged as a key metabolic sensor in 
various metabolic tissues. Association between SIRT1 and insulin 
resistance has been focused in many reports based on statistical analysis 
using GraphPad Prism 5.0 software [27-30]. SIRT1 is not included 
in the considered data set [16,17]. Also the correlation between the 
prog nostic factors of breast cancer and apparent diffusion coeffi cient 
in diffusion weighted imaging sequences of malignant lesions have 
been discussed with Pearson correlation test [31-33]. These studies 
may be performed based on probabilistic modeling which may give 
many interesting findings. 

Conclusion
The effects of insulin on glucose, BMI, age and breast cancer 

biomarkers have been developed in the report based on probabilistic 
insulin modeling. The mean & dispersion models of insulin have been 
obtained in the report using both Log-normal & Gamma JGLMs. 
Final fitted model for insulin has been accepted based on smallest 
AIC value, comparison of outputs from both the distributions, small 
standard error of the estimates (Table 1) and graphical analysis. Both 
the distributions fitted results show almost similar interpretations. 
So, the interpretations regarding the insulin associations have been 
derived in the report based on approximately a true model. Moreover, 
the obtained outputs support many earlier reported associations such 

as (insulin & BMI), (insulin & glucose), (insulin & HOMA-IR) and 
(insulin & leptin). In addition, the report focuses the insulin level is 
not significantly higher for breast cancer women. It has shown many 
new factors that have explained the insulin levels mean & dispersion 
functions which have not been reported in earlier articles. The report 
presents a very complex associations of insulin with age, BMI, glucose 
and BC markers, which are really helpful for practitioners as well as 
researchers. Insulin levels should be examined regularly at older ages 
and BC women. 
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