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muscle hypertrophy by enhancing protein synthesis independent 
of the regulation of satellite cells [7,8]. Myostatin pathway induces 
repression of several miRNA including miRNA-486, which results in 
an increase in PTEN level and inhibition of the Akt/mTOR pathway. 
Therefore, myostatin inhibition leads to activation of the Akt/mTOR 
anabolic pathway [9]. This is one of the mechanisms of regulation 
of skeletal muscle size by myostatin inhibition. Recent investigations 
have revealed that activins are also involved in muscle atrophy and 
adipogenesis, and activin inhibition by antagonists is effective in 
inducing muscle hypertrophy [4,10,11]. Activins are structurally 
related to myostatin, and they are produced in various tissues 
including gonads and the nervous system. Activin isoforms including 
activin A, B and AB are expressed in adipose tissues, and they play 
important roles in the physiological and pathological development of 
adipose tissue, adipose tissue fibrosis, energy homeostasis and insulin 
sensitivity [10,11]. 

 Both myostatin and activins signal through two types of 
transmembrane serine kinase, called activin type II receptors (ActRIIB 
and ActRIIA) and activin receptor-like kinases 4, 5 and 7 (ALK4, 5 and 
7) [12]. Intracellularly, activated receptors phosphorylate Smad2/3, 
and then Smad2/3 forms a complex with Smad4. The Smad complex 
translocates into the nucleus to regulate gene expression. ActRIIB 
and ActRIIA are shared by myostatin, activin and several growth 
differentiations factors/bone morphogenetic proteins such as GDF11. 
Pharmacological inhibition of the myostatin/activin pathway by the 
soluble extracellular domain of ActRIIB or neutralizing antibody 
results in substantial increase of skeletal muscle mass. Intriguingly, 
pharmacological ActRIIB inhibition also suppresses diet-induced 
obesity and accompanying metabolic deregulation [13,14]. This is 
caused by an increase of energy expenditure. Effects on adipose tissue 
by myostatin/ActRIIB inhibition are likely to be secondary to skeletal 
muscle hypertrophy [5,15]. However, a unique effect on adipose tissue 
is also proposed as described below. Surprisingly, ActRIIB inhibition 
activates brown fat-like thermogenic program in white adipose 
tissue (WAT) and enhances mitochondrial function and uncoupling 
respiration in brown adipose tissue (BAT), resulting in enhanced 
cold tolerance and increased energy expenditure [13,14]. Browning 
in WAT is also reported in myostatin knockout mice [16]. Therefore, 
two mechanisms have been proposed for the increase in energy 
expenditure by myostatin/ActRIIB pathway inhibition: an increase 
in skeletal muscle mass, and the browning of WAT and activation of 
BAT. WAT is a tissue for energy storage, and BAT is an important 
tissue for dissipating energy via fat and glucose oxidation and heat 
generation to maintain body temperature. Enhanced browning 
of WAT is a unique result of blocking the ActRIIB pathway using 
soluble ActRIIB or neutralizing antibodies [13,14]. However, one 
report showed that soluble ActRIIB was not effective in reducing fat 
mass in already obese mice [17]. Therefore, ActRIIB inhibition could 
be a promising therapeutic strategy for obesity at the preclinical stage. 

Abbreviations
ActRIIB: Activin Receptor Type IIB; ActRIIA: Activin Receptor 
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Skeletal muscle is the largest organ in the body and plays critical 
roles in smooth body movement, homeostasis, maintenance of body 
temperature, energy expenditure and insulin sensitivity. Skeletal 
muscle also serves as an “endocrine organ” because it secretes 
a variety of hormones and cytokines, which are referred to as 
myokines. In this editorial, I would like to mention about two types 
of myokines: myostatin and related TGF-β family members, and the 
newly discovered myokine known as irisin. In 1997, myostatin was 
discovered as a skeletal muscle-derived member of the TGF-β family, 
which potently inhibits muscle growth [1]. Myostatin knockout mice 
showed skeletal muscle hypertrophy and hyperplasia. Regulation of 
skeletal muscle mass is of scientific interest and clinically attractive 
because effective therapy to prevent muscle atrophy are needed 
for genetic diseases that cause muscular atrophy, sarcopenia and 
cachexia. Intriguingly, the absence of myostatin not only increases 
muscle mass but also reduces body fat accumulation. Myostatin gene 
ablation suppresses the genetically obese phenotype and diet-induced 
obesity [2]. There are multiple ways to block myostatin activity. 
Stabilized myostatin propeptide is a unique myostatin inhibitor, and 
transgenic myostatin propertied expression prevents diet-induced 
obesity and insulin resistance [3]. Follistatin is a potent myostatin and 
activin inhibitor and increases muscle mass [4]. Follistatin-derived 
myostatin inhibitor has been developed and transgenic expression of 
this inhibitor in skeletal muscle not only increases muscle mass but 
also decreases adipose tissue mass, and prevents diet-induced obesity 
and hepatic steatosis [5]. Interestingly, daily subcutaneous injection 
of follistatin 288, which is a potent follistatin isoform, into mice results 
in an increase in skeletal muscle mass with an associated decrease 
in fat mass. Therefore, systemic administration of follistatin would 
be effective for reducing fat accumulation as well as muscle wasting 
[6]. Mechanistically, in addition to the effects on myogenic stem/
precursor cells, inhibition of myostatin activity in adulthood causes 
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Recently, an effective monoclonal antibody against activin type II 
receptors, ActRIIB and ActRIIA, called BYM338, has been developed 
to treat muscle atrophy [18]. Whether the antibody is effective in 
reducing fat mass remains to be determined.

 Irisin, a cleavage product of a type I membrane protein FNDC5, 
is secreted from skeletal muscle [19]. Irisin promotes the formation 
of brown adipocyte-like cells in WAT, especially in subcutaneous 
fat depots, and protects against insulin resistance and obesity, even 
in mice at an obese state [19]. Interestingly, browning of WAT by 
irisin and myostatin/activin blocking using soluble ActRIIB or 
follistatin are similar. A study of the association between levels of 
irisin and follistatin has been performed in humans [20]. In a cohort 
of healthy young men with normal BMI, irisin levels correlated 
with follistatin levels but not with myostatin or activin A levels [20]. 
The same tendency was observed in morbidly obese individuals. 
Furthermore, serum levels of both irisin and follistatin increase by 
exercise. Because there is an association between circulating levels of 
irisin and follistatin, and both myokines have similar functions, it is 
possible that there is interplay between the signaling pathways of the 
two myokines [21].  

 In summary, the actions of myokines and their inhibition, along 
with the crosstalk between skeletal muscle and adipose tissue, were 
reviewed in this editorial. Because multiple ligands could be blocked 
by soluble ActRIIB, type II antibody or follistatin, precise mechanistic 
analyses are essential before clinical application. The role and 
function of irisin must be more precisely determined before testing its 
therapeutic effect. However, analyses of the signal crosstalk between 
skeletal muscle and adipose tissue via myokines will definitely pave 
the way for the fight against obesity and diabetes.
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