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Abstract

Based on fractional calculus, we considered the fault zone as a typical 
example of the deformed medium including internal structures characterized by 
the fractional dimension. The fractional notation of the Green’s function for the 
generalized Laplace field gives a relationship between the fractional dimension 
and the fractional order of the equation. We applied the relationship to the 
displacement field around the strike-slip fault characterized by the generalized 
Laplace equation. From the observed data for the strike-slip fault, we calculated 
the fractional dimension of the fractional deformation field. This result implies that 
the non-locality of the deformation field increases toward the fault. Moreover, we 
suggest the heuristic method of deriving the displacement field of the fractional 
Navier equation in the semi-fractional case.

Keywords: Fault zone; Fractal; Fractional calculus; Displacement field; 
Deformation

Introduction
There has been ongoing theoretical interest in deformed mediums 

with internal structures including discontinuities [1-5]. In particular, 
internal structures in the lithosphere influence various deformation 
phenomena, such as complex fracturing in a fault zone [6-10]. From 
a geometrical viewpoint, the concept of the fractal dimension is useful 
for characterizing the complexity of such internal structures [11-14].

As pointed out by Tarasov [15], most of the processes associated 
with complex systems including fractal media have nonlocal 
dynamics in time and space. On the other hand, the fractional 
calculus is a powerful tool for describing physical systems that have 
long-term memory and long-range spatial interactions. Therefore, 
close connections exist between fractional calculus and the dynamics 
of many complex systems, including fractal media [15,16]. This paper 
considers deformation fields in a fault zone from the viewpoint of 
fractional analysis.

To quantitatively discuss the coupling between a fault zone 
and deformation fields, a study of Green’s function will be quite 
helpful because this function includes fundamental properties of the 
deformation field generated by the corresponding source [17]. Thus, 
this paper applies the fractional Green’s function to the deformation 
fields in a fault zone. In particular, we focus on the fractional Laplace 
field for the following reasons.

Previous studies [9,10,18] have shown that the Laplace equation 
is significant for describing scale-invariant properties of fracturing 
in a lithospheric plate with internal discontinuities. Generally, 
the Laplace equation has been used to describe diffusion-limited 
aggregation such as complex fracturing characterized by the fractal 
dimension (fractional dimension) [19]. The Laplace equation with 
both homogeneous elastic coefficients [20,21] and non-homogeneous 
elastic coefficients [22] has been analyzed in a complex deformation 
field. This paper considers the fractional property of the derivative 
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itself to analyze deformed mediums, including internal structures 
such as a fault zone. For this purpose, the paper considers the Green’s 
function for the Laplace equation with the fractional derivative

 (−∆)a/2 f=0   (1)

where a is a fractional value and f is a function. When a=2, this 
equation becomes the standard Laplace equation.

In the analysis of a fractional derivative such as Equation (1), we 
should use fractional calculus [23-25]. Caputo and colleagues have 
done pioneering work on fractional analysis in various subjects, 
including the solid earth science and the biosciences [26-30]. For 
instance, they applied the fractional derivative to viscoelastic models 
and enabled the description of power-law relaxation and the memory 
effect [31].

Caputo [32] introduced the fractional derivative that is often used 
in the fractional calculus as well as the Riemann-Liouville fractional 
derivative. From a differential geometric standpoint, fractional 
calculus has been developed based on the Caputo fractional derivative 
[33-35] because of zero values for actions on constants. On the other 
hand, fractional Fourier transforms have also been used particularly 
for the fractional Green’s function [16] and have been applied 
to various phenomena, such as general turbulence systems and 
incompressible two-dimensional flows in geophysical fluid dynamics 
[17,36]. Because we want to apply the fractional Green’s function of 
Equation (1), this paper uses fractional Fourier transforms.

Methods
Review of the fractional derivative

The fractional derivative is defined via a fractional integral, such as 
the Riemann-Liouville integral [23-25]. We apply the Fourier integral 
because this approach is useful for deriving a Green’s function. This 
paper defines the Fourier transform and inverses as follows:
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The derivative of the function results in:
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where n is an integer. Replacing n with a positive real number a 
defines the fractional derivative [24]:
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For instance, consider the function A(x) =|x|-k (x<0). From 
Equations (2) and (5), we obtain:
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where Γ is the Gamma function defined by:
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In the next section, we review the Green’s function of the 
fractional Laplacian based on the fractional derivative.

Fractional order of derivatives and dimension
Let us consider the following fractional Laplacian of any order

 (−∆)a/2 f(r) = -q(r),    (8)

where f(r) and q(r) are the function of the position r. For instance, 
in some geophysical fluids, f(r) is the stream function, q(r) is the scalar 
field advocated by the velocity field, and the parameter a characterizes 
the property of a generalized turbulence system [17]. The Green’s 
function for the fractional Laplacian of any order a is already known 
mathematically [17,37,38]. The fractional Laplacian in Equation (8) 
is also applied to the fractional diffusion equation and the fractional 
wave equation [38,39].

From the Fourier transform of (8) with the point source -δ(r), we 
obtain a Green’s function in Fourier space:

( ) 1 1ˆ .
2 aG k

kπ
= −     (9)

Thus, a Green’s function in the physical space is given by the 
inverse Fourier transform of (9) [17]:
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where we consider the case 1≤a≤3 and a≠2. For the general case 
including a<0 and applications, see [17,36].

Equation (10) shows that the distance dependence of a Green’s 
function in terms of the fractional order of derivatives is given by:

G(r) ∝ra-2.     (11)

For instance, we have G∝1/r for a=1. This is in agreement with 
the distance dependence of a Green’s function in three-dimensional 
space. Moreover, for a=3, we have G∝r, which is in agreement with the 
one-dimensional case. These results imply the following relationship 
between the fractional orders of derivative a and the dimension D:

a +D=4.     (12)

In fact, the distance dependence of a Green’s function in terms of 
the dimension D is given by:

G(r) ∝r2-D.     (13)

By comparing Equation (11) and Equation (13), the relation of 
(12) is also supported. Because a is a real number, (12) means that the 
dimension D is not necessarily an integer, such as the case of a fractal 
dimension. Thus, in this paper, we call D the fractional dimension.

Note that we should distinguish the fractional dimension from 
the space dimension. For instance, even if a phenomenon in two-
dimensional space can be characterized by the fractional dimension, 
the dimension of space, in which the phenomenon is embedded, 
remains two. This is similar to the case of fractal dimension. For 
instance, we consider coastlines in two-dimensional space. The 
dimension of space remains two even if the complexity of the 
coastline’s measured length is characterized by the fractal dimension.

Results
Dislocation model of strike-slip fault

From the viewpoint of the Volterra dislocation, the screw 
dislocation corresponds geometrically to the strike-slip fault [40-
42]. In three-dimensional space(x1,x2,x3), let us consider the screw 
dislocation (strike-slip fault) with the dislocation line along the 
x3-direction. The boundary condition at the dislocation is that the 
displacement discontinuity across the dislocation surface is equal 
to the fault slip. Adopting a radial coordinate system (r,θ) centered 
on the dislocation line (the x3 axis), the slip fault is related to the 
displacement field u3 (Figure 2 in [43]). In this case, Hooke’s law (i.e., 
the elastic constitutive law) shows that there are only two nonzero 
stresses: σ13=μ∂1u3 and σ23=μ∂2u3, where μ is the Lame constant. On the 
other hand, the equilibrium equation gives ∂1σ31+∂2σ32 =−F, where F 
is the external force. Then, the displacement field u3=U(x1,x2) satisfies

∂1∂1u3+∂2∂2u3 =∆U=−F.     (14)

To consider the fractional effect of internal structures on the 
deformation field in the fault zone, we extend this equation such as 
in (8):

 (−∆)a/2 U= -F.     (15)

Then, we consider that the point force (double-couples type; 
[43]), Equation (13) gives the displacement field in terms of the 
fractional dimension D:

U=Cr2-D,     (16)

where C is a constant. From section 3, the relationship between a in 
Equation (15) and D in Equation (16) is given by the following:

a + D =4.     (17)

Equations (16&17) show that the displacement in fractional space 
can be characterized by the fractional derivative.

For instance, we can consider the displacements that occurred 
during the 1992 magnitude -7.3 Landers earthquake (Figure 1; data 
from [44]). Based on the observed data in Figure 1, we estimate the 
relative variation in the fractional dimension D of Equation (16). We 
set the value of D to 1.00 at the farthest point r ≈27. In this case, Figure 
2 shows that the fractional dimension decreases with proximity to the 
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fault. In section 5, we discuss the meaning of this variation.

Fractional navier equation
In solid earth science, the Navier (Cauchy) equation is often used, 

as is the Laplace equation; thus, we consider the fractional Green’s 
function for the Navier equation. First, we review the integer case of 
a Green’s function, and then we extend this derivation process to the 
fractional case.

The Navier equation is derived from the combination of three 
basic equations, i.e., the equation of motion (ρd2ui /dt2 = ∂iσji+Fi), 
the strain-displacement equation (εij = (1/2)(∂iuj + ∂jui)), and the 
constitutive equation (Hooke’s law; σij = λδijεkk + 2μεij), where ui is the 
displacement field, εij is the strain field, σij is the stress field, μ and λ are 
the Lame constant, Fi is an external force, and ρ is the density of mass. 
Under the condition of equilibrium, the Navier equation in terms of 
the displacement field is given by the following:

μ∂l∂lui + (λ+μ)∂i∂kuk = −Fi.   (18)

From the point force acting at the point ξ, we obtain the equation 
in terms of a Green’s function gij:

μ∂l∂lgij + (+μ)∂i∂kukj = −∝ijβ(xi−ξi),    (19)

where δ(xi− ξi) is a triple Dirac delta. In this case, we consider the 
following form of the solution:

3 ,ij i j
ij

r r
g

R R
= +

δ
α β     (20)

where ri= xi− ξi and ( ) ( ) ( )2 2 2
1 1 2 2 3 3 .R r x x x= = − + − + −ξ ξ ξ  

Forms such as (20) are not general forms, but are often used in solid-
earth science to consider the deformation field around the dislocation 
(fault) (e.g., [43]). The parameters α and β are the constants 
determined by substituting (20) into equation (19) as follows:

2 0,
1 2v
−

− + =
−
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where v is a Poisson’s ratio. From (21) and (22), the concrete form of 
(20) is given by:
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This is the well-known form of the Green’s function for the 
Navier equation [45]. Next, we extend the above derivation process 
to the fractional case.

We replace the ordinary derivative operator with the fractional 
derivative operator Di

a. In this case, the basic equations used to derive 
Equation (18) are rewritten as ρDt

2a ui=Di
aσji + Fi and εij = (1/2)(Da

iuj 

+ Da
jui). Regarding the constitutive equation, we can use the ordinary 

one because it does not include the derivative term. In this case, 
Equations (18&19) are rewritten as follows:

μ(Da
l)

2ui + (λ+μ)Da
iD

a
kuk= −Fi,   (24)

 μ(Da
l)

2gij
d

 + (λ+μ)Da
iD

a
kgkj

d= − 𝛿ij𝛿(xi−ξi).  (25)

Moreover, from Equation (20), we assume the Green’s function 
to be in the following form:

2 ,ij i jd
ij d d

r r
g A B

R R−= +
δ

    (26)

where d(≠2) is a positive real number and A and B are coefficients. 
Just as the coefficients of Equation (20) are determined by Equation 
(19), the coefficients A and B of Equation (26) are determined by 
Equation (25).

To determine A and B, we consider the semi-fractional dimension; 
i.e., the integer dimension with a small perturbation (real number), 
in the following analysis. Moreover, to simplify the calculations, 
we introduce the concept of transformation between the ordinary 
derivative and the fractional derivative. For instance, the fractional 
derivative of the power law function x-d is given by the following 
formal form:

Da
xx

-d = E(d,a)x-d-a,    (27)

where E(d,a) is a function of d and a. As shown in section 2, if d=k, we 
have E(k,a)= Γ[k+a]/ Γ[k]. On the other hand, the ordinary derivative 
gives ∂xx

-d= -dx-d-1. Therefore, we obtain the following transformation:

Da
xx

-d= F(d,a,x)∂xx
-d,    (28)

where F(d,a,x)= −E(d,a)x-a+1/d. Equation (28) means that the 
fractional derivative of the power law function is equal to the product 
of the corresponding function and the ordinary derivative. Based on 
this result, we give the heuristic method of solving problems, i.e., 
assume the following transformations:

(Da
l)

2∂j∂iR
4-d= G(4−d,a,xl)∂i∂j∇2R4-d,   (29)

Da
iD

a
jR

2-d= H(2−d,a,xi,xj)∂i∂jR
2-d,   (30)

Figure 1: Surface displacement during the 1992 magnitude 7.3 Landers 
earthquake plotted against distance from the fault (data from [44]).

Figure 2: Fractional dimensions estimated from the data in Figure 1.



Austin J Earth Sci 2(3): id1018 (2015)  - Page - 04

Yamasaki K Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Da
iD

a
k∂k∂jR

4-d= I(4−d,a,xi,xk)∂i∂j∇2R4-d,  (31)

(Da
l)

2R2-d= J(2−d,a,xl)∇2R2-d.   (32)

Under relations (29)–(32), we can determine the coefficients A 
and B by substitution of Equation (26) into Equation (25):
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BA d v G d I H
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Therefore, Equation (26) gives the fractional Green’s function:
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When d=3 and the fractional derivative becomes the ordinary 
one (i.e., G=H=I=J=1), this relation is in agreement with the ordinary 
Green’s function (23).

Discussion
The Laplace equation has been used to describe complex 

phenomena characterized by the fractal dimension, such as diffusion-
limited aggregation, dielectric breakdown, and fracturing [19]. In 
particular, Nagahama and Teisseyre [9] used the micromorphic 
continuum to derive the generalized Laplace equation (the local 
diffusion-like conservation equation) for strains and clarified the 
scale-invariant properties; i.e., fractal properties of fracturing in a 
lithospheric plate with microstructure under steady non-equilibrium 
strain flux through plate boundaries.

This paper generalizes the Laplace equation in the sense of the 
fractional derivative, Equation (15), and uses the relationship between 
the fractional dimension D and the fractional derivative order a, 
such as Equation (17): a + D = 4. Because a is the derivative order, 
larger a is related to more non-local phenomena. From a + D = 4, 
smaller D is also related to more non-local phenomena. Therefore, we 
can estimate the degree of non-locality by measuring the fractional 
dimension D. Figure 2 shows that the fractional dimension decreases 
toward the fault. This implies that the non-locality of the deformation 
field increases toward the fault.

On the other hand, previous fractal analysis of fractured rocks 
showed that the fractal dimension increases toward the fault [46,47]. 
The fractal dimension of fracture patterns depends on the energy 
density for fracturing [48], and the fractal dimension can be employed 
as an independent measure of the energy distribution near faults [47]. 
Therefore, if the relationship between the fractional dimension of this 
study and the fractal dimension of previous studies can be derived, 
the non-locality estimated by the fractional dimension may be related 
to the energy distribution estimated by the fractal dimension. This is 
a topic for future research.

We generalized the Navier equation in the sense of the fractional 
derivative: Equation (24). We suggested the heuristic method to 
derive the Green’s function, Equation (35), by the point force, and 

it is in agreement with the ordinary Green’s function (23) when d=3 
and the fractional derivative becomes the ordinary one. To clarify the 
characteristic of the fractional of a Green’s function, let us calculate 
the value of gd

12 for the integer case d=3 and the semi-fractional case 
d=2.9 (i.e., G≈H≈I≈J≈1). Figure 3 shows a plot of the value of gd

12 
against the distance from the point source calculated at μ=30 [GPa] 
and v=0.25. The solid line indicates d=3 and the broken line indicates 
d=2.9. It can be seen that the difference between the value of the 
fractional case and the value of the integer case increases with distance 
from the point source. That is, the fractional Green’s function shows 
long-range correlation compared with the standard Green’s function.

Conclusion
(1) The fractional Laplace equation shows that the fractional 

dimension defined in this paper is related to the fractional order of 
the equation, as described by Equation (17). Equation (17) indicates 
that the fractional dimension is inversely proportional to the non-
locality related to the fractional order of the equation. From this 
relation and the observed data, it was found that the fractional 
dimension decreases; i.e., the non-locality of the deformation field 
increases, toward the fault.

(2) Because the fractal dimension increases toward the fault, it is 
implied that the non-locality estimated by the fractional dimension is 
related to the energy distribution estimated by the fractal dimension.

(3) We suggested and computed the component of the Green’s 
function for the fractional Navier equation in the semi-fractional 
dimension case, and it was found that the fractional Green’s function 
shows a slow decreasing of the displacement compared with the 
standard Green’s function.

For the conclusion will be more convincible, we plan in the 
near future to apply our method to other cases in which the precise 
data for displacement field were obtained just like the 1992 Landers 
earthquake.
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