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Abstract
Intracoronary optical coherence tomography (OCT) is an interferometric 

imaging technology that uses near-infrared light to provide cross-sectional 
images with an axial resolution of 10 μm and a transverse of 20-40 μm in vivo. 
The imaging capabilities of OCT have enabled visualization of important features 
of coronary plaque, including thrombus, macrophage, neovascularization, stent 
implantation and stent strut coverage, which have provided new insights for 
better understanding of this disease. Frequency domain (FD)-OCT is second-
generation form of OCT that is able to acquire OCT images at a much higher 
frame. The high-speed imaging capabilities of FD-OCT have made intravascular 
OCT practical and the introduction of this new technology is expected to 
help cardiologists make more informed decisions on coronary interventions. 
Recently, a new form of OCT, termed micro-optical coherence tomography 
(μOCT), has been developed, which affords a ten-times spatial resolution 
improvement compared conventional OCT systems. µOCT has shown to be 
capable of imaging sub cellular features of coronary artery that are relevant 
to atherosclerosis, including leukocyte adhesion and diapedesis, fibrin and 
platelet accumulation, and individual macrophages, smooth muscle cells, and 
cholesterol crystals. In addition, μOCT is capable of evaluating stent struts and 
the body’s reaction to implantable devices in much greater detail than previously 
possible. These unique capabilities of μOCT could make it a useful tool for 
understanding and diagnosing coronary artery disease at the cellular level. 
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Introduction
Optical coherence tomography (OCT) is an emerging optical 

imaging modality that performs high-resolution cross-sectional 
imaging of tissue microstructure in situ in real-time [1]. When 
applied to cardiology, OCT can visualize coronary pathology with a 
transverse resolution of 20-40 μm and an axial resolution of ~10 μm, 
which are one to two orders of magnitude better than intravascular 
ultrasound (IVUS). Similar to IVUS, OCT measures time-of-flight of 
back-reflected radiation from the coronary wall to construct a depth-
resolved reflectivity profile. OCT images are higher in resolution than 
IVUS because the propagation of light is faster than sound. Scanning 
the beam along the arterial wall generates a three-dimensional 
volumetric data set that captures comprehensive micro structural 
information of the coronary artery. 

There are two implementations of OCT referred to as time-
domain (TD)-OCT and frequency-domain (FD)-OCT [2-5]. In TD-
OCT system, light from a broadband light source (around 1300 nm 
wavelength) is split into a sample arm that is focused on the coronary 
wall and a reference arm that is sent to a moving reference mirror. 
The back-reflected light from the sample and reference arms are 
recombined at a single detector. When the optical path difference 
between light reflected from various structures in the coronary wall 
(sample arm) and the reference arm are within coherence parameter 
of the light source termed its coherence length, the light from these 
two arms combine and form an interference pattern. Depth-resolved 
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arterial structure is constructed by recording the interferometric 
intensity as a function of reference mirror distance as it is moved. An 
OCT image is generated by successively moving the focus to a new 
location on the coronary wall and performing a TD-OCT scan. 

Many of the seminal studies that established OCT as an 
intracoronary diagnostic imaging technology were conducted 
with TD-OCT. Using cadaver specimens, TD-OCT ex vivo studies 
demonstrated OCT’s ability to visualize the three-layered structure 
of a coronary artery and established criteria for diagnosing coronary 
atherosclerosis [6]. Post mortem studies revealed that OCT could 
distinguish different types of coronary artery plaques with high 
sensitivity and specificity [7]. Furthermore, a number of important 
hallmarks of the disease such as macrophage accumulations, 
thrombus classification, cholesterol crystals, calcium deposition, 
fibrous caps, and lipid cores could be visualized [8-11].

Because of OCT’s superior contrast and resolution, this 
technology is able to assess coronary stents following placement. In 
a swine study conducted in 2000, OCT was able to more accurately 
detect artery dissection, tissue prolapsed and malapposition than 
IVUS [12]. The first-in-human OCT imaging case was reported in 
2002 [6] with a number of clinical pilot studies [13-16]. From these 
in vivo OCT studies, we have gained a more detailed understanding 
of human atherosclerotic plaques, thrombus formation, macrophage 
distributions, neovascularization, stent implantation and stent strut 
coverage in coronary artery disease [13-21]. In particular, OCT clinical 
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trials have contributed to understanding the morphological features 
associated with acute coronary syndrome (ACS), caused by plaque 
rupture and thrombus formation. OCT is a unique intracoronary 
imaging technology that has demonstrated the ability to quantify the 
thickness of a thin fibrous cap and to detect the presence of a large 
lipid pool and macrophage infiltration within fibrous cap, all of the 
pathological hallmarks of high-risk or vulnerable plaques that are 
thought to be precursors of ACS and AMI [22]. In addition, in-vivo 
OCT studies have shown the capability of this technology to study 
key factors presumably related to the prognosis of stent-implanted 
lesions, including stent strut coverage, neointimal hyperplasia, stent 
mal apposition [23,24] and in-stent neoatherosclerosis [25,26].

Widespread clinical adoption of TD-OCT was limited due to slow 
acquisition speed, typically 4-8 frames per second. As a result, most 
TD-OCT imaging studies required balloon occlusion of the coronary 
with flushing to remove blood from the field of view. This balloon 
occlusion technique limited the applicability of IVOCT because of 
long scan times with a potential for inducing coronary damage or 
myocardial ischemia.

A major technical breakthrough in IVOCT occurred with the 
development of Fourier-Domain (FD)-OCT, a second-generation 
form of OCT that is able to obtain OCT images with a much higher 
frame rate compared with TD-OCT, while maintaining excellent 
image quality. There are two types of FD-OCT; one that utilizes a 
wavelength swept laser source, often referred to as SS-OCT or optical 
frequency domain imaging (OFDI), and another that utilizes a broad 
bandwidth optical source termed spectral-domain systems (SD-OCT). 
In SS-OCT or OFDI systems, the reference mirror is fixed so that the 
reference and sample arm path lengths are roughly equivalent. The 

light source has a narrow instantaneous line width but its wavelength 
is rapidly swept over a broadband spectral range. Each wavelength 
component is undergoes interference between the back-reflected 
light of the sample and reference arm. Applying a Fourier transform 
to the spectral interference pattern yields an OCT reflectively profile 
and the depth-resolved coronary structure. Because the swept source 
laser can be tuned more rapidly than the reference mirror can be 
moved in TD-OCT, the OFDI frame rate is greater than that of TD-
OCT by 1-2 orders of magnitude, which enables the acquisition of 
three-dimensional comprehensive volumetric microscopy of long 
arterial segment following a safely administered single 8-10 cc saline 
or radio contrast flush.

The initial demonstration of intracoronary OFDI in-vivo was 
performed in a swine in 2006 [5]. After FDA approval of the OFDI 
catheter, the first clinical study was conducted in 2008 [27]. Following 
this initial demonstration, IVOCT products based on this technology 
have been commercialized and are widely available for use in 
interventional cardiology. The near term goal for this technology is to 
improve outcomes for coronary intervention and follow the response 
of stent deployment [28,29]. To date, adoption of OFDI by leading 
cardiovascular centers is growing due to the improvements in the 
technology and efforts to standardize technology among different 
cardiovascular research centers and manufacturers [30].

Although OCT provides greater than an order of magnitude 
increase in resolution over IVUS, higher-resolution images are 
required to further explore cellular-level responses to coronary 
atherosclerosis. We have recently demonstrated a new higher-
resolution form of OCT, termed micro-optical coherence tomography 
(μOCT), which affords ten-time better spatial resolution than that of 
conventional FD-OCT systems [31]. Based on a form of spectral-
domain (SD)-OCT, μOCT differs from OFDI in that it uses a larger 
spectral bandwidth and shaped optical beam that illuminates the 
artery wall, which produces high resolution images in both axial (≤1 

 

 
 
Figure 1: Corresponding μOCT and FD-OCT images of human coronary 
artery ex vivo.
(A,B) Comparison between corresponding FD-OCT and μOCT images of 
a calcium plate within coronary artery wall. (C) Foam cells imaged by FD-
OCT appear as highly scattering, ill-defined punctate regions (red arrows). 
(D) Corresponding μOCT image of foam cells. μOCT clearly visualizes each 
foam cell individually, which appear as highly scattering round or ellipsoidal 
structures (Left lower inset) that contain smaller low signal regions within, 
consistent with nuclei. (E) Necrotic fibroatheroma with cholesterol crystal by 
FD-OCT. (F) Cholesterol crystals are characterized by intense reflections 
from their top and bottom surfaces on μOCT. Scale bar, 200 μm. FC; Fibrous 
Cap, NC; Necrotic Core.

 

Figure 2: Comparison μOCT and FD-OCT images of stent implanted 
coronary lesion ex vivo.
(A) OFDI image. Stent struts (red arrows) and calcified lesion (green arrow) 
can be seen. (B) Corresponding μOCT image. Drug eluting stents showing 
polymer (yellow arrows) overlying the strut reflections (top right inset) and 
calcified lesions were observed. Scale bar, 200 μm.
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μm) and lateral (≤2 μm) directions. With this improved resolution, 
μOCT has demonstrated the ability to visualize subcellular features 
of coronary artery relevant to atherosclerosis ex vivo, including 
leukocyte adhesion and diapedesis, fibrin and platelet accumulation, 
macrophage, smooth muscle cells, and cholesterol crystals (Figure 
1). In addition, μOCT has been shown ex vivo to be capable of 
evaluating polymer coating overlying stent struts (Figure 2) as well as 
inflammatory cell infiltrations around these devices. Current µOCT 
research is focused on the development of a catheter that is capable 
of acquiring this information in vivo. Once intravascular µOCT is 
available, it is likely that the cellular and subcellular resolution of this 
technology will provide significant insight into the nature of human 
coronary artery disease, will provide superior diagnostic capabilities 
for the prospective prevention of ACS and AMI, and will enable 
the design and understanding of the arterial response to implanted 
coronary medical devices. 
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