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vascular repair not only by inducing apoptotic cell death of EPCs, but 
also by inhibiting the EPC adhesion, spreading and migration [9]. 
Serum levels of AGEs are inversely associated with the number and 
migratory activity of circulating EPCs in apparently healthy subjects, 
further supporting the clinical relevance of AGEs in impaired 
endothelial cell repair [11]. 

Vascular calcification is a common problem among the elderly 
and the patients with diabetes and CKD, and might be associated 
with increased morbidity and mortality of CVD [12,13]. We have 
previously shown that AGEs or RAGE activation induces osteoblastic 
differentiation of microvascular pericytes or aortic smooth muscle 
cells, respectively, which would play a role in atherosclerotic plaque 
calcification in diabetes and CKD. 

HDL and its major protein constituent, apolipoprotein AI, promote 
reverse cholesterol transport, thereby preventing foam cell formation 
in atherosclerotic lesions by stimulating cholesterol efflux from 
macrophages [14]. AGEs have been shown to decrease mRNA levels 
of adenosine triphosphate-binding membrane cassette transporter A1 
(ABCA1) and ABCG1 in THP-1 cells, crucial factors in macrophage 
cholesterol efflux and reverse cholesterol transport, thus implicated 
in accelerated atherosclerosis in diabetes [14]. Further, we have 
recently found that AGE-RAGE interaction significantly reduces gene 
expression of silent mating type information regulator 2 homolog 1 
(SIRT1) in THP-1 macrophages, a highly conserved NAD+-dependent 
protein deacetylase, which could play a protective role against CVD 
[15]. Given that monocytic SIRT1 expression is decreased in patients 
with stable coronary artery disease and acute coronary syndromes 
compared with healthy subjects [16], the pathological crosstalk 
between AGEs and anti-aging molecules, SIRT could contribute to 
the development and progression of atherosclerotic CVD as well. 

AGEs and CKD
Diabetic nephropathy is a leading cause of end-stage renal disease, 

and accounts for disabilities and the high mortality rates in patients 
with diabetes [7]. Diabetic nephropathy is characterized by functional 
and structural changes in the glomerulus, such as glomerular 
hyperfiltration, thickening of glomerular basement membranes 
and an expansion of extracellular matrix in mesangial areas [7]. It 
ultimately progresses to glomerular sclerosis, which is associated with 
increased albumin excretion and renal dysfunction. 

Interaction of AGEs with RAGE has evoked inflammatory 
reactions, thereby causing progressive alteration in renal architecture 
and loss of renal function in diabetes [17-19]. RAGE-overexpressing 
diabetic mice have shown progressive glomerulosclerosis with 
renal dysfunction, compared with diabetic littermates lacking the 
RAGE transgene [17]. Diabetic homozygous RAGE null mice failed 
to develop significantly increased mesangial matrix expansion or 
thickening of the glomerular basement membrane [18]. Moreover, 

A non-enzymatic reaction between ketones or aldehydes and 
the amino groups of proteins, lipids and nucleic acids contributes 
to the aging of macromolecules [1,2]. This process begins with the 
conversion of reversible Schiff base adducts, and then to more stable, 
covalently-bound Amadori rearrangement products [1,2]. Over 
a course of days to weeks, these early glycation products undergo 
further reactions and rearrangements to become irreversibly crossed-
linked, fluorescent protein derivatives termed advanced glycation 
end products (AGEs) [1,2]. Under hyperglycemic or oxidative stress 
conditions such as diabetes, formation and accumulation of AGEs 
have been known to progress at an accelerated rate [1,2]. There is a 
growing body of evidence that AGEs play a role in the pathogenesis 
of chronic kidney disease (CKD) and cardiovascular disease (CVD) 
[3-7]. In this short communication, I briefly review the pathological 
role of AGEs in cardiorenal disorders and its therapeutic intervention 
by DNA aptamer. 

AGEs and CVD
Arterial stiffness is associated with the prevalence of CVD and 

could predict future cardiovascular events in healthy subjects or 
patients with CVD [8]. Quantitative and qualitative alterations 
of collagen and elastin fibers by AGE modification contribute to 
decreased elastic properties of the vessels, thereby being involved in 
arterial stiffness [9]. 

Engagement of receptor for AGEs (RAGE) with the ligand, 
AGEs elicits oxidative stress generation via NADPH oxidase and 
subsequently activates the redox-sensitive transcription factor NF-kB, 
which could promote inflammatory, proliferative, and thrombogenic 
reactions in vessels, contributing to accelerated atherosclerosis [3-6]. 

Bone marrow-derived circulating endothelial progenitor cells 
(EPCs) are critical to vascular repair [10]. Diabetes is associated with 
endothelial dysfunction, decreased EPC function and mobilization, 
which could accelerate atherosclerosis and increase the risk for CVD 
in diabetic patients [10]. The AGE-RAGE interaction has impaired 
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deletion of RAGE prevented diabetic nephropathy in the OVE26 type 
1 mouse, a model of progressive glomerulosclerosis and decline of 
renal function [19]. 

DNA aptamer directed against AGEs (AGE-aptamer) 
Aptamers are short, single-stranded DNA or RNA molecules that 

can bind with high affinity and specificity to a wide range of target 
proteins [20]. Numerous aptamers have been developed and used 
in the clinical fields as a tool for modulating the function of various 
proteins [21]. 

We have found that high-affinity AGE-aptamer inhibits glomerular 
hypertrophy and extracellular matrix protein accumulation, decreases 
urinary excretion levels of albumin, and prevents renal dysfunction in 
type 2 diabetic animals [22]. In this study, AGE-aptamer directly bound 
to AGEs and resultantly blocked the binding of AGEs to RAGE, and 
continuous infusion of AGEs-aptamer dramatically decreased AGE 
levels in the glomeruli of diabetic mice [22]. So, it is conceivable that 
AGE-aptamer might decrease the glomerular accumulation of AGEs 
via the blockade of RAGE-induced, oxidative stress-mediated AGE 
formation in the kidney. In addition, since turnover rate of aptamer-
bound AGEs by THP-1 macrophages was increased, AGE-aptamer 
could enhance the elimination of AGEs from the body through the 
increased turnover by macrophages. 

We have very recently found that AGE-aptamer not only inhibits 
neointima formation after balloon angioplasty, but also reduces the 
expression levels of AGEs, RAGE and an oxidative stress marker, 
8-hydroxy-2’-deoxyguanosine in balloon-injured arteries [23]. 
Further, compared with control-aptamer, AGE-aptamer significantly 
suppressed smooth muscle cell proliferation, macrophage infiltration, 
and platelet-derived growth factor-BB (PDGF-BB) expression in 
balloon-injured carotid arteries [23]. These findings suggests that 
AGE-aptamer might prevent balloon injury-induced neointimal 
hyperplasia by reducing PDGF-BB and macrophage infiltration via 
suppression of the AGE-RAGE-mediated oxidative stress generation. 
Taken together, the observations suggest that blockade of the AGE-
RAGE axis by AGE-aptamer might be a novel therapeutic target for 
preventing CVD and CKD in diabetes. 
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