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Abstract

Although the coronavirus disease 2019 (COVID-19) pandemic is still 
ongoing, the path towards a better future is finally becoming clear as a result 
of the initiation of COVID-19 vaccination. While pneumonia was initially 
emphasized as the only complication of COVID-19, it has become clear that 
fatal complications, such as a thromboembolism, are also likely to occur. In 
the era of recurring coronavirus infections, it is important to identify the causes 
and risk factors regarding exacerbations in patients who may develop severe 
COVID-19. This review describes how to prevent COVID-19 exacerbations in 
the context of cardiovascular disease, especially exacerbations related to the 
vascular endothelium.
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The COVID-19 Pandemic
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), which causes coronavirus disease 2019 (COVID-19), has led 
to the emergence of a global pandemic. Three waves of the COVID-19 
epidemic have already been observed in Japan (Figure 1) as well as 
in many other countries where the disease has killed many elderly 
people and patients with underlying diseases. Although the pandemic 
has not come to an end, progress is being made with COVID-19 
vaccination.

While pneumonia was initially emphasized as the only 
complication of COVID-19, serious cardiovascular complications 
resulting from COVID-19, such as systemic thromboembolism, 
acute myocardial infarction, myocarditis, severe arrhythmias, and 
long-term dysfunction of the heart, have also been reported [1-
3]. Moreover, studies have suggested that severe complications of 
COVID-19 are strongly related to a damaged vascular endothelium, 
the induced formation of thrombi, the release of inflammatory 
cytokines, and the production of excess Reactive Oxygen Species 
(ROS) [4,5]. Moreover, the vascular endothelium has been shown to 
be an important target of SARS-CoV-2 [6]. Here, we propose a new 
concept which we have termed the systemic inflammatory-reactive 
microvascular endotheliopathy (SIRME) [7] (Figure 2).

SARS-CoV-2 and Angiotensin-Converting 
Enzyme 2

Coronaviruses have a spike receptor-binding superfamily 
domain, which binds to the Angiotensin-Converting Enzyme 2 
(ACE2) [8]. As more progress related to COVID-19 is being made 
and various findings become published, the approximate identity 
of COVID-19 and its resulting severe complications are becoming 
more apparent [9,10]. Based on the genomic sequence of SARS-
CoV-2, researchers have found that the virus has a very high affinity 
for cells that strongly express ACE2, causing severe damage to such 
cells [11,12]. In addition, studies have shown that patients with 
cardiovascular disease, diabetes, and hypertension are more likely to 

experience severe COVID-19 and show a higher mortality rate than 
other groups of patients [4,6]. Moreover, obese people, smokers, and 
patients with chronic kidney disease are also more likely to become 
severely ill. In fact, scientists have long known that the ACE2 is 
expressed in vascular endothelial cells in such patients [13]. Based 
on these findings, researchers have concluded that SARS-CoV-2 uses 
ACE2 to invade vascular endothelial cells [14].

Vascular Endothelial Function
Arteriosclerosis progression, plaque rupture [15], and 

microvascular dysfunction in chronic heart failure are closely related 
to vascular endothelial dysfunction. Therefore, the evaluation of 
vascular endothelial function can be used as a screening method for 
high-risk patients with cardiovascular diseases to stratify the risk of 
developing cardiovascular diseases in the future. In Japan, evaluation 
of vascular endothelial function is covered by health insurance. For 
this evaluation, two measurement methods may be used: Flow-
Mediated Dilation (FMD), which is performed by an ultrasonic 
device that evaluates blood flow-dependent vasodilatory reactions, 
and Reactive Hyperemia Peripheral Arterial Tonometry (RH-PAT), 
measured using an Endo-PAT™, which is a device that uses fingertip 
pulse waves. Vascular endothelial function measurements are useful 
as an index for primary and secondary prevention of cardiovascular 
diseases. Decreased vascular endothelial function is also related 
to heart failure, which is divided into cardiac systolic dysfunction 
(Heart Failure with Reduced Ejection Fraction, HFrEF) and diastolic 
dysfunction (Heart Failure with Preserved Ejection Fraction, 
HFpEF). Of those, HFpEF is known to be more common in elderly 
patients. Furthermore, HFpEF is more likely to occur when cardiac 
microvascular endothelial function declines.

Vascular Endothelial Glycocalyx Damage
As vascular endothelial cells hold various functions that 

help maintain homeostasis in the body, the state of intravascular 
dysfunction can be seen as a state in which the balance of biological 
functions is disturbed. Lifestyle-related diseases induce vascular 
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endothelial dysfunction and damage the Vascular Endothelial 
Glycocalyx (VEGLX), which covers vascular endothelial cells. In acute 
inflammatory diseases, the VEGLX is peeled off and floats in large 
quantities in the blood [16]. The VEGLX is also impaired in patients 
with hypertension [17] and diabetes [18-21] as well as in patients with 
chronic diseases, such as bronchial asthma and chronic obstructive 
pulmonary disease, heart failure [22,23], ischemic heart disease 
[24], microvascular angina [25], kidney disease [26], atherosclerosis 
[27-29], hyperuricacidemia [30], or obesity, and elderly people [21] 
and smokers. Large amounts of VEGLX fragments have also been 
detected in the blood of a variety of acute and serious diseases, such 
as severe infections [31,32], sepsis [33-37], trauma [38,39], acute 
coronary syndrome [40,41], stroke [42], and multiple organ failure. 
Although the VEGLX is known to cover the inside of blood vessels 
and functions as a barrier for vascular endothelial cells, studies have 
recently shown that it also controls intracellular signals [43]. When the 
VEGLX becomes damaged, the function of the vascular endothelial 
cells deteriorates, resulting in many inflammatory substances as 
well as substances that promote blood clots being released into the 
circulating blood from the vascular wall.

Severe Complications of COVID-19

Many studies have reported that COVID-19 patients may 
experience severe disease as a result of decreased vitamin D 
concentration in the blood [44,45]. The relationship between vitamin 
K deficiency and severe COVID-19 has also been reported [46,47]. 
As insufficient vitamin K levels will result in an impaired vascular 
endothelial function, the virus is more likely to invade vascular 
endothelial cells with overexpressed ACE2 and impaired VEGLX.

Studies have highlighted that olfactory dysfunction, excessive hair 
loss, and prolonged general fatigue induced by COVID-19 are related 
to zinc deficiency [48-50]. Furthermore, in serious diseases, such as 
severe COVID-19, various minerals and vitamins are consumed in 
large amounts in the body [49]. The proper supplementation of these 
valuable nutrients may effectively prevent COVID-19 aggravation, 
thus accelerating recovery from various COVID-19 sequalae.

SIRME Could Explain Severe COVID-19 
Complications

Various lifestyle-related diseases cause disorders of the VEGLX, 
arteriosclerosis progression, and other cardiovascular diseases. 
Contrastingly, serious COVID-19 complications, such as Acute 
Respiratory Distress Syndrome (ARDS), Disseminated Intravascular 
Coagulation Syndrome (DIC), Kawasaki disease shock syndrome 
[51-53], microvascular thrombosis, and arrhythmia, are known to be 
accompanied by VEGLX damage [54-56]. Based on their relationship 
with a damaged glycocalyx, we have termed these symptoms 
“Systemic Inflammatory-Reactive Microvascular Endotheliopathy” 
(SIRME) [5].

The concept of SIRME could explain the mechanism behind 
COVID-19 aggravation in a unified manner (Figure 2). The definition 
of SIRME is the presence of a causative inflammation, a strong 
thrombotic tendency, and organ damage occurring simultaneously. 
In more severe SIRME, the fragility of fragmented glycocalyx is high 
and ground-glass shadows may be frequently observed in both lungs. 
Together, these should be recognized as an emergency condition 
preceding sudden COVID-19 aggravation. By evaluating the state of 
the VEGLX, the severity of COVID-19 can be determined at a very 
early stage of the disease. VEGLX damage in SIRME is considered 
to occur at an earlier and milder stage than the previously proposed 
shock-induced endothelial disease (SHINE) [57] and Systemic 
Inflammatory Response Syndrome (SIRS). Using the concept of 
SIRME to explain COVID-19 aggravation, it can be predicted 
that SARS-CoV-2 and other viruses, which mainly target vascular 
endothelial cells, will cause the same pathological condition.

Various Pathological Conditions Caused by 
SIRME

The presence of inflammation, strong thrombotic tendency, and 
organ damage as defined by SIRME cause microvascular damage, 
VEGLX loss, and increased vascular permeability [58]. As shown in 
Figure 2, if SIRME occurs in the brain, the condition will result in 
cerebral embolism, whereas if it occurs in the heart, it will result in 
myocardial infarction, heart failure, arrhythmia, and Kawasaki disease 

Figure 1: Changes in the number of COVID-19 patients in Tokyo and Kanagawa Prefecture. The changes in the number of COVID-19 patients per 100,000 in 
Tokyo and neighboring Kanagawa Prefecture from March 1, 2020 to February 16, 2021 is shown. In Sagamihara City, a government-designated city located in 
the northwestern part of Kanagawa Prefecture, the number of patients remained almost the same. On October 23, 2021, the number of COVID-19 patients in 
Sagamihara temporarily increased due to the occurrence of clusters in hospitals and related facilities.
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shock syndrome [59]. Furthermore, if SIRME occurs in the lung, the 
condition will cause ARDS [60,61], pulmonary thromboembolism, 
and pneumonia. Finally, if systemic thrombosis is a consequence of 
SIRME, DIC, SIRS, and multi-organ failure will occur.

The Vascular Endothelial Glycocalyx and 
COVID-19

Recently, a number of studies on the aggravation of VEGLX and 
COVID-19 have been published [62-66]. Biomarkers related to the 
VEGLX and vascular endothelial damage are abnormally high in 
patients with severe COVID-19. Therefore, it is possible to identify 
patients who are at an increased risk of becoming severely ill and 
who may benefit greatly from prompt treatment. VEGLX is being 
increasingly considered as a new potential biomarker, especially 
in patients with severe COVID-19. Thus far, VEGLX damage has 
acted as an index for determining the effectiveness of screening 
for cardiovascular diseases, diabetes control, and cardiovascular 
protection measures. Proper disease management to prevent damage 
to the VEGLX will lead to the development of future atherosclerotic 
diseases and the prevention of cardiovascular events [67]. To prevent 
cardiovascular disease in the COVID-19 era, we should limit the 
intake of high amounts of sodium [68], oxidized lipoproteins [69], 
and sugar [18,19]. In addition, preventing obesity and smoking 
while encouraging increased physical activity is crucial in order to 
ensure the sufficient management of coronary risk factors. Whereas 
cardiovascular disease management is necessary to ensure a healthy 
VEGLX, a healthy VEGLX will in turn prevent the aggravation 
of COVID-19 and other emerging viral infections that target the 
vascular endothelium.
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