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Abstract

It is a challenge to analyze hierarchically structured data with either numerical 
or categorical response variables when number of groups (e.g., level 2 units) 
is small. Even sample size is large, a small number of groups would cause 
downward bias in standard errors of parameter estimates in multilevel modeling, 
thus the test statistics would be enlarged and the type I error would be inflated. 
Both parametric and nonparametric residual bootstrap approaches have been 
developed to deal with a small number of groups in multilevel modeling when the 
response variable is numeric. However, the corresponding approach is limited 
for multilevel modeling with categorical response variables, ex. binary outcome. 
To fill the gap, we have developed an approach by implementing nonparametric 
residual bootstrap multilevel logit model for binary data with small number of 
groups using SAS macro. With simulated data for modeling binary response 
variable with a small number of groups, our results showed explicit advantage 
of the nonparametric residual bootstrap approach over the approach using the 
default estimator -- Residual Pseudo-Likelihood (RSPL) –in SAS Proc Glimmix.

Keywords: SAS Proc Glimmix; SAS macro; Multilevel model; Residual 
Bootstrap Multilevel Logit Model; Bias

Introduction
In statistics, there are two important concepts: consistence and 

bias of a parameter estimate. Consistence means that a parameter 
estimate 

∧

θ  converges to its unknown true parameter θ when sample 
size n→∞, while bias of a parameter estimate 

∧

θ  refers to the difference 
between 

∧

θ  and θ. Bias can be fixed bias due to the system itself or 
random bias/ variability due to sampling errors. Evidences show that 
Maximum Likelihood Estimates (MLEs) of variance components are 
generally downwardly biased [1,2] with multilevel logit model using 
generalized linear mixed procedure in SAS. When the number of 
groups (level-2 units) is small, the bias of variance components was 
downward for correlated binary data [3,4]. Of many factors which 
can result in the downward estimation of variance components, the 
estimators and the assumption are the most important. First, MLE 
estimates of variance are smaller than Ordinary Least Square (OLS) 
estimates because the denominator in the formula of MLE uses the 
sample size n instead of n minus the rank of an independent variable 
matrix in OLS; Second, both level-1 and level-2 residuals are assumed 
to have normal distributions. However, to ensure such an assumption 
holds, the number of groups (number of level-2 units) have to be 
large. Unfortunately, the assumption of a normal distribution for 
level-2 residuals may not hold in real research because the number 
of groups is often small. The downward bias of variance components 
implies the smaller standard error, resulting in bigger test statistics 
and therefore, inflating type I error in a hypothesis test. In addition, 
the downward bias of variance components will result in a shorter 
confidence interval, thus the claimed coverage probability of 95% 
Confidence Interval (CI) will be less than stated [5,6]. The ways to 
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correct the downward bias of standard errors include, but not limited 
to: asymptotic bias correction, Jackknife, and bootstrap. Restricted 
or Residual Maximum Likelihood (REML) approach [7] used in the 
SAS Proc Mixed model for numerical data, and Residual Pseudo-
likelihood (RSPL) analog to REML used in SAS Proc Glimmix 
for categorical data, belong to the category with asymptotic bias 
correction. REML takes into account of fixed effects to maximize the 
likelihood function while RSPL is casted in terms of Taylor expansion 
to maximize the pseudo likelihood [8]. Both REML and RSPL can 
reduce, to some extent, the bias in estimation of some complex 
variance. Firth [9] proposed another approach by adding a first 
order bias term of the maximum likelihood estimator to the score 
function to prevent the bias from occurring. In Jackknife procedure 
[10], the leave-one-out estimators are used for bias correction 
with order asymptotic bias smaller than O(n-1) [11]. Bootstrap is a 
collection of methods following the bootstrap framework to improve 
the accuracy of inference. Three kinds of bootstrap methods are 
available: (1) case resampling through repeated sampling from 
original data with replacement, (2) parametric residual bootstrap 
with residual resample’s randomly drawn from normal distributions 
with replacement, (3) nonparametric residual bootstrap with 
residuals randomly drawn from new transformed residuals with 
replacement. Although both of the parametric residual bootstrap 
and nonparametric residual bootstrap are often used, the non-
parametric residual bootstrap is more preferred because it provides 
more accurate inferences through correction of standard error or 
variance term [12] than parametric residual bootstrap. Wang et al. 
[13] developed an approach to conduct the nonparametric residual 
bootstrap multilevel modeling to deal with small number of groups 
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for continuous response variables using a SAS macro. However, the 
corresponding modeling approaches are not available for categorical 
(e.g., binary) response variables. To the best of our knowledge, the 
present study is by far the first time to apply nonparametric residual 
bootstrap technique to modeling binary response variables in 
multilevel data with a small number of groups.

We gave a brief description of how to conduct on-parametric 
residual bootstrap multilevel modeling; and demonstrated how to 
implement nonparametric residual bootstrap multilevel logit model 
using our SAS macro, and then analyzed simulated data using residual 
bootstrap approach, as well as SAS Proc Glimmix with the default 
estimator RSPL. The results of the different modeling approaches 
were compared and findings were discussed. 

Methods
Non-parametric residual bootstrap multilevel logit model

The following hypothesized parsimonious multilevel logit model 
was used for demonstration of modeling hierarchically structured 
data with a binary response variable:

Yij= g-1(αj+β1jx1ij+εij)   (1)

αj=γ00+u0j    (2)

β1j=γ10+γ11Z1j+u1j  (3)

where i=1, 2, …, i represents the ith level-1 unit, j=1, 2, …, j 
represents the jth group (level-2 units), g-1 is the inverse of a link 
function: a logit function for the logistic regression model. The 
level-2 residuals u0j and u1jhave bivariate normal distributions with 
zero means and unknown variances and covariance; and u0j and u1j 
are independent of the level-1 residual ε1j which is assumed to have 
a normal distribution with the mean of zero and unknown variance.

When the number of groups is small, non-parametric residual 
bootstrap approach is applied for multilevel modeling (RBMLM) [13]. 
The primary procedure of RBMLM is to transform both level-1 and 
level-2 residuals of a multilevel model, and then draw random samples 
of the transformed residuals with replacement to generate a large set 
of bootstrap samples. With a continuous response variable, the model 
has an identity link function. A new response variable is generated 
as the combination of the predicted value y

∧
 and the transformed 

residual for each subject in each bootstrap sample. For multilevel 
logit model, the level-1 and level-2 residuals can be estimated from 
SAS Proc Glimmix procedure, and then transformed using the same 
approach described in Wang et al. [13]. A new response variable in 
the bootstrap sample is generated by summing up the predicted log 
odds (i.e., logit) and the transformedlevel-1 residual. However, the 
generated new response variable is continuous in scale; we, therefore, 
need to transform it to a binary measure (0 vs 1) for final modeling. 
The specific steps for conducting non-parametric residual bootstrap 
multilevel logit model are described below.

Step 1: Run a multilevel logit model with the simulated dataset, 
save the level-1 and level-2 residuals, and then rescale the residuals 
by centering to ensure they have zero means. Next, transform the 
rescaled residuals into new residuals (see Appendix 1 in Wang, 
Carpenter, & Kepler [13]).

Step 2: Draw a random sample with replacement from the 

transformed level-1 and level-2 residuals, separately.

Step 3: Use the transformed Level-2 residuals to estimate adjusted 
fixed coefficients.

Step 4: Use the adjusted fixed coefficients to estimate the 
predicted log odds (i.e., logit), and then generate a new response 
variable by summing up the estimated log odds and the transformed 
level-1 residual.

Let’s use the model shown in Eqs 1-3 to further describe Steps 
3 and 4. After level-2 residuals are transformed, they are used to 
generate the adjusted fixed coefficients using Eqs. (4) and (5); and 
then generate a new continuous response variable using Eq. (6).

* *
00 0ˆ ˆ ˆj juα = γ +     (4)

* *
1 10 11 1 1

ˆ ˆ ˆj j jz uβ == γ + γ +   (5)
* * *

*
1 1j ijjij ijy x

∧ ∧ ∧

= α + β + ε   (6)

Then Step 5 follows, in which a new binary response variable **
ijy

is generated by turning the generated numeric response variable *
ijy

into a probability i jpr
∧

 using the inverse of logit function, and then 
comparing i jpr

∧

 with a random number rij that was drawn from the 
uniform distribution of (0,1) for each individual. If prij>rij, then let

** 1,ijy = else ** 0.ijy =  Then, refit the model shown in Eqs 1-3, using the 
new binary variable **

ijy as the response variable and save the model 
parameter estimates.

Step 6: Repeat Steps 2-6 for a total of (B-1) times (B=500 
bootstrap samples in the present study) and append the B sets of 
model parameter estimates. The mean and standard deviation of 
the empirical distribution of the bootstrap estimates for particular 
parameter would be the bootstrap parameter estimate and its 
standard error, respectively.

On the basis of the SAS macro RBMLM developed by Wang 
et al. [13], we developed a SAS macro for nonparametric residual 
bootstrap multilevel logit model. Since Proc Glimmix used to analyze 
data with a generalized linear mixed model can provide residuals 
similar to Proc Mixed, it can be used to obtain the residual terms 
for logit models which cannot be obtained using traditional logistic 
regression. A multilevel dataset with 2500 observations consisting 
50 groups (level-2 units) with 50 cases in each group was simulated 
for demonstrating the parsimonious multilevel logit model shown in 
Eqs. 1-3.

Simulation
First, the model was estimated using SAS Proc  Glimmix procedure 

with the default estimator of Residual Pseudo-Likelihood (RSPL). 
Then, three sub-datasets were randomly selected from the simulated 
dataset with different number of groups (20, 15, and 10), in which the 
group size remained unchanged (i.e., 50 cases per group). Then both 
Proc Glimmix with the default estimator RSPL and our SAS macro 
were applied to model each of the three sub-datasets, respectively; 
and the parameter estimates were compared to “true” parameters. 
Assuming the dataset was simulated for a “target populations,” the 
regression coefficients (e.g., fixed-effect of x1, cross-level interaction 
effect of x1*z1) estimated from the dataset using RSPL are considered 
“true” parameters. If a regression coefficient estimated using a 
sub-dataset sampled from the original dataset deviated from the 
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corresponding “true” coefficient, the deviation would be considered 
bias. The extent of bias was evaluated by coverage probability of the 
95% C.I. 

To estimate the coverage probabilities for parameter estimates, 
we repeated the sampling and modeling process 500 times, and the 
percentage of the 95% CIs for each fixed coefficient estimate covering 
the corresponding “true” parameter was calculated for each model. 
If a parameter’s standard error is unbiased, we would expect its 
coverage probability to be at least 0.95, otherwise the standard error 
is downward biased. 

Results 
Table 1 shows the model results using the sub-dataset with only 

10 groups (level-2 units). As it can be seen, the fixed effect of  x1 and 
the cross-level interaction effect of x1*z1estimated from bootstrap or 
RSPL are similar to each other and close to the corresponding “true” 
coefficients. However, the coefficients estimated from bootstrap 
approach had better coverage probabilities than those estimated from 
RSPL: the coverage probabilities of both fixed effect of x1 and cross-
level interaction effect of x1*z1 were all greater than 0.95 for bootstrap 
approach, but less than 0.95 for RSPL.

Two more sub-datasets with 15 and 20 groups (Level-2 units), 
respectively, were randomly selected from the simulated dataset, 
and the coverage probabilities of the multilevel model regression 
coefficients were estimated using both bootstrapping and RSPL for 
each of the datasets using the aforementioned approach. Figure 
1 shows the coverage probability curve for intercept coefficient, 
while Figure 2 for fixed effect of x1, and Figure 3 for the cross-
level interaction effect of x1*z1 by number of groups. The coverage 
probability of 95% CI for the intercept coefficient was high (>0.95) 
and was only slightly better with an increase of number of groups for 
both the bootstrap and RSPL approaches. With respect to the fixed 
effect and cross-level interaction, the coverage probabilities were 
all greater than 0.95 for bootstrap approach, but less than 0.95 for 
RSPL when the number of groups was small. The difference between 
the two modeling approaches tended to diminish when number of 
groups increases. Our findings provide evidence that non-parametric 
residual bootstrap approach works better than RSPL for modeling 
multilevel data with binary response variable when the number of 
groups is small.

Discussion
In application of multilevel modeling, researchers often encounter 

a challenge to analyze data when the number of groups (higher level 
units or clusters) is small, since the standard errors of parameter 
estimates are biased downward if without correction. When a 
response variable is continuous, residual bootstrapping technique has 
been applied for bias correction caused by the small number of groups 
[12,14]. A SAS macro has been developed by Wang and collegues for 
non-parametric residual multilevel modling [13]. However, such 
an innovative analytical approach and corresponding computer 
programs are only applicable to multilevel modeling with continuous 
response variables. When the response variable is binary, application 
of the residual bootstrapping is not straightforward because the 
traditional logistic regression does not have a residual term. The 
level-1 residuals can be obtained through deducting the residuals 

True
Parameter Bootstrap RSPL

Estimate (S.E) Coverage Probability Estimate (S.E) Coverage Probability

Intercept 0.306 0.198 (0.950) 95,2% 0.238 (0.966) 95.9%

Fixed effect of x1 -1.125 -1.142 (1.553) 97.6% -1.154 (1.288) 92.5%

Cross-level Interaction Effect of x1*z1 1.146 1.332 (2.184) 96.9% 1.245 (1.739) 90.7%

Table 1: Selected results using nonparametric residual bootstrap multilevel logit model vs. Residual Pseudo-likelihood (RSPL) through sampling with 10 Groups.

Figure 1: Probability coverage of 95% CI of intercept. 

Figure 2: Probability coverage of 95% CI of X1.

Figure 3: Probability coverage of 95% CI of X1*Z1.
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from the level-2 residuals. In the present study, we demonstrated 
how to conduct nonparametric residual bootstrap multilevel logit 
modeling using simulated data. Our results provide evidence that the 
nonparametric residual bootstrap approach produces more accurate 
parameter estimates than the RSPL (the default estimator in SAS 
Proc GLIMIX) for modeling hierarchically distributed data when the 
number of groups is small. Furthermore, the difference between the 
two estimation approaches diminished when the number of groups 
increased. Our SAS macro has been developed by the authors for 
nonparametric residual bootstrap multilevel logit model and the 
macro is available.
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