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Abstract

A general method to create adjusted survival trees is developed. Prognostic 
survival trees have been used to automatically uncover complicated GxG 
and GxE interactions, however scientist soften want to uncover this structure 
while adjusting for confounding factors not of interest. Interaction survival trees 
automatically identify the best treatment choice for patients and area promising 
model to enable personalized medicine, but simulations to assess their 
performance on the high dimensional data found in personalized medicine have 
not been conducted. We develop a general framework to adjust for confounding 
factors in prognostic and interaction survival trees. These factors are numerous 
in practice and can include age, gender, study site in a randomized multicenter 
clinical trial, and the principal components of ancestry difference to control for 
population stratification in genetic studies. Extensive simulations show the 
performance of our methods to be well controlled under the null and are robust 
to large dimensional covariate spaces under the alternative. In a real data 
example, our adjusted interaction tree successfully identifies subgroups of head 
and neck cancer patients that respond positively to having antioxidant vitamins 
added to their treatment regime. Applications, guidelines for use, and areas for 
future research are discussed.
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Introduction
Tree-based methods were first introduced by Morgan and 

Sonquist [1] and greatly extended by Breiman, Freidman, Olshen, and 
Stone [2]. The flexibility of tree-based methods are appealing as they 
can automatically detect complicated interactions, naturally handle 
missing data via surrogate splits [2], select covariates in the presence 
of high dimensional data, and can be easily extended by ensemble 
methods to create random forests [3]. Early work on the development 
of survival trees began shortly after the original classification and 
regression tree methods and is summarized by LeBlanc and Crowley 
[4]. Recent research has extended survival trees to more complicated 
situations, such as multivariate data [5], extended ensemble 
methods to survival trees such as in random survival forests [6], and 
introduced new splitting rules that partition the covariates pace based 
on interaction with a specified covariate [7].

Tree-based methods are particularly appealing for scientific 
studies as they automatically partition in the covariate space in a 
way that mimics a human’s natural decision making process. Indeed, 
survival trees have often been used to uncover complicated GxE and 
GxG interactions and classify the prognosis of patients [8]. However 
in these genetic studies clinician softens want to uncover the effects of 
a set of genetic and environmental factors of scientific interest while 
adjusting for the effect of confounders which are not of direct interest. 
Although such adjusted trees have been developed for continuous 
and binary out comes [9] they have not been developed for the time-
to-event outcomes of ten found in cancer research.

Recently personalized medicine, which is the idea of giving the 
right treatment to the right person based on their genetic, clinical 
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and demographic characteristics has become of increasing interest 
in the clinical community [10-13]. Developing statistical methods 
to help enable personalized medicine in cancer research has many 
challenges. They should be able to handle high dimensional genetic 
data, focus on prediction of best treatment rather than prognosis, 
adjust for clinical confounders, work on survival data, and be easily 
interpretable for clinical decision making. Common approaches to 
identify subgroups of patients who respond differently to treatment 
include sub group analysis, which is not statistically sound [14], and 
regression modeling, which cannot automatically identify complex 
subgroups [15]. Survival trees have been modified to partition the 
covariate space based on differences in response to treatment [7], 
however, they cannot adjust for confounding and simulations have 
not been done to assess their effectiveness on large scale genetic data 
found in personalized medicine.

In this article we develop a general framework to create survival 
trees that partition the covariates pace based on the effects of asset of 
genetic and environmental factors that are of scientific interest while 
adjusting for possible confounders which are not. Such confounders 
are numerous in practice and can include age, gender, study site in a 
multicenter randomized clinical trial, and the principal components 
of ancestry difference to control for population stratification. We 
apply this framework to prognostic and interaction survival trees. 
Here, prognostic survival trees are tree-based methods which 
generate rules to classify the prognosis of patients by partitioning 
them based on combinations of covariates; while interaction survival 
trees generate rules to classify the best treatment choice of patients by 
partitioning them based on combinations of covariates which have 
strong interaction with treatment. 
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Next we will introduce the basic structure of a recursive 
partitioning algorithm used to create trees. We then define our new 
splitting rules, pruning algorithm, and a method to choose the final tree. 
Extensive simulations are the presented to evaluate the performance 
of our innovative methods under several scenarios, including the 
high dimensional covariate space commonly found in personalized 
medicine. An application of our methods to a randomized clinical is 
performed, showing its significant clinical relevance. We then close 
with a discussion on the practical use and implementation of our 
methods, as well as on areas of further research.

Methods
Algorithm overview

Tree based models are created using a recursive partitioning 
algorithm. These algorithms usually consist of three parts: a splitting 
rule, a pruning algorithm, and a method for selecting the final tree. 
The splitting rule partitions the covariates pace χ into many groups. 
It is applied recursively until there are very few observations in each 
group, or a pre-specified maximal number of groups are created [2]. 
This partition can be represented as a tree T, with terminal nodes 

 | |T  corresponding to the partition of the covariate space χ into  | |T  
subsets. This large tree usually over fits the data and will perform 
poorly out-of-sample. Thus a sub tree is chosen as the final tree. The 
space of all possible sub trees is large, and a pruning algorithm is used 
to efficiently search this space and find the optimal sub trees. The 
final sub tree is then selected either using a test set or a resampling 
technique [16].

Splitting
For simplicity, in this paper, we only consider the case of making 

binary splits to single covariates. A potential splits of a covariate c 
can then be characterized as follows. If c is binary, then s is the 
trivial partition of c. If c is continuous or ordinal, s can be any binary 
partition of c such that all elements in one partition are less than those 
in the other. If c is categorical then s can be any binary partition of 
the levels of c.

To partition a node h, find the splits such that some measure of 
improvement G(s,h) is maximized.

*( , ) max ( , )
hs S

G s h G s h
∈

= =

where Sh is the set of all binary splits that can be made at node h. 
If there is more than one terminal node to partition, then find the 
best splits * for each h∈H and split the node with the maximal 
improvement. In the case of ties randomly select one of the splits with 
maximal improvement.

Recall the standard survival data set-up with data for observation 
i of the form (yi,xi,δi) where xi is the covariate vector for observation i 
and survival time yi is censored if δi= 0 and an event if δi= 1. The Cox 
model assumes that

'
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where x are covariates, λ(t|x) is the hazard at time t given x and λ0 
is some baseline hazard function. The maximum likelihood estimate 
(MLE), β

∧

, of the parameters β is found without specifying λ0 by 
maximizing the log-partial- likelihood
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with respect to β where ti is the survival time for observation i and 
R(ti) is the set of observations i that are at risk at time ti.

Consider two Cox models, m0:log(λ)=β′0x0 and m1:log(λ)=β′0x0

+β′1x1 is said to be nested in m1 and the Likelihood Ratio Test (LRT) 

Statistic corresponding to the hypothesis test H0:β1 = 0 is
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we define two new splitting rules which can be used to create adjusted 
prognostic trees and adjusted interaction trees respectively.

Definition1.Ga(s,h) is the LRT statistic corresponding to H0:βs=0 
in the Cox model log(λ) = βcxc +βsxs

Definition 2.Gai(s,h) is the LRT statistic corresponding to H0:βts= 0 
in the Cox model log(λ) = βcxc + βtxt + βsxs + βts(xt×xs)

Also recall the non-adjusted interaction survival tree split Gi(s,h) 
defined in [7] as the LRT statistic corresponding to H0: βts= 0 in 
the Cox model log(λ) = βtxt + βsxs + βts(xt×xs); Here xc is a vector of 
confounding variables, xs is an indicator of the potential splits, which 
is a binary partition of some covariate c, xt is a treatment with ≥2 
levels, and xt×xs is the interactive term of the treatment and the splits. 
βs is the effect of the splits, βt is the effect of the treatment, βc is the 
effect of the confounders, and βts is the effect of the interaction of the 
treatment and the splits. Ga(s,h) is the split for the adjusted survival 
tree and Gai(s,h) is the split for the adjusted interaction survival tree. 
The best split can be interpreted as the one that creates the two child 
nodes with the most statistically significant adjusted difference in 
prognosis and response to treatment respectively.

Pruning
The split-complexity Gα(T ) can be defined as

Gα(T)=G(T)−α|S|

where S is the set of internal nodes of tree T,|S| is the cardinality of 
S, α≥0 is the complexity parameter, and G(T), the goodness of split 
of tree T, is the sum of the split improvement statistics over the tree.

( ) ( )
h S

G T G h
∈

=∑
Consider all possible sub trees of a large tree T0, although this 

space is large it is easy to see that when α=0 the entire tree T0 will 
have the largest split complexity, and when α is sufficiently large the 
null tree with no splits Tm will. Leblanc and Crowley [16] extend 
this argument and define a pruning algorithm based on split-
complexity that efficiently finds the sub trees Tm < ... < Tk <...< T0 and 
corresponding complexity parameters ∞ > αm > ... > αk > ...>α1>α0=0 
such that Tk has the largest goodness-of-split of any sub tree for all 
αk ≤ α<αk+1. They prove the theoretical properties of this algorithm 
directly, and as a special case of CART [2]. After building a large tree 
with one of our new splitting rules Ga or Gai we efficiently find the 
optimal sub trees by using this algorithm directly, letting G be the new 
splitting rule used to build the original tree.

Selection of the final tree
After finding the optimally pruned sub trees with the above 

algorithm, we may still wish to choose a final tree. Since the splits 
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used to make a tree are adaptively chosen as the maximum of several 
potentially correlated LRT statistics, the split complexity Gαc (T) is 
larger than would be expected if the splits were chosen a-priori. If we 
have a large sample we can get an ‘honest’ estimate of Gαc (T) by using 
the following method.

First split the data into a training set and test set. Next build a 
large tree with the training set and find the optimal sub trees with the 
algorithm in the above section. Finally force the test set down each of 
the sub trees. The final tree is the one that maximizes Gαc (T) where 
Gαc (T) is calculated using the test set. We recommend using αc = 4. 
This roughly corresponds to the 0.05significance level of the split [4].

When the data cannot be split into training and test set we propose 
choosing the final tree with a 5-fold cross validation based method. 
First build a large tree with the full data and find the optimal sub trees 
using the algorithm from section 2.3. Toper form the 5-fold cross 
validation first partition the observations into 5folds Lj,j=(1,...,5) and 
build 5 trees T(−j) on samples L(−j). For each αk and T(−j) find the optimal 
sub tree T(−j), k and force Lj on T(−j), k obtaining trees Tj, k. For each Tj, 
k calculates the goodness of split G(Tj,k) and take the mean over the 
folds to get G(T.,k). Find k*=max k Gαc (T.,k) and if Gαc(T.,k*)>0 the 
final tree is Tk*, otherwise it is the null tree with no nodes.

Simulation
For our two new splitting methods, Ga(s,h) and Gai(s,h), we 

simulated our recursive partitioning algorithm under the true tree 
structure corresponding to the ‘null hypothesis’ of no splits, with one 
split, and with splits at position one and two. These tree structures 
can be seen in Figure 1. Failure times were simulated from the 
exponential distribution and censoring times from a uniform (0,γ) 
distribution. γ was chosen to have approximately 20% censoring. 
Three set s of covariates, xc, xt and xs were generated. xc was a set of 
four potential confounders, two of which were truly associated with 
the outcome. xt was a balanced binary treatment. By default xs was 
100 binary variables used to build the tree. All unassociated xs were 
assigned a random proportion, while associated xs had proportion 
0.5. Under the simulations of the null tree and tree with one split n 
was 500, and under the simulation with two splits it was 1000. For the 
prognostic tree the effect size of the true split tseβ  was set to 2 and for 
the interaction tree the effect size tseβ

 of the interactive term of true 
split and treatment was set to 3.5. When simulating two associated 
nodes, the properties of the first node were fixed while the second 
node varied. We also ran simulations of the non-adjusted splitting 

rule Gi(s,h) on data with no confounders and compared the results 
with Gai(s,h). Under each setting large trees of size 10 were built, the 
optimal sub trees were found, and a final tree was selected with 1000 
replications.

Extended simulations with 40% censoring, 60% censoring, 2:1 
unbalanced treatment, weak correlation between the associated SNP 
and the confounder, and strong correlation between the associated 
SNP and confounder were performed. For each of these simulations 
the default parameter values defined above were used.

Results
The model performance under the ‘null’ is shown in Table 1 and 

Table 2. The model performs well with only a 1.4% to 8.4% chance of 
selecting the wrong tree, and with no obvious trends when varying 
any parameters. Note that although in the selection of the final tree 
we penalize each split by 4, which roughly correspond to the 0.05 
confidence level for a χ2 random variable, this does not imply an 
expected 5% chance of selecting the wrong tree under the null.

Under the ‘alternative’ we first consider the probability that the 
true tree is identified as an optimally pruned sub tree by the pruning 
algorithm in section 2.3. If this does not occur, then our method to 

Figure 1: Simulated Tree Structures. The following tree structures were 
simulated to test our adjusted prognostic and adjusted interaction tree 
algorithms.

Splitting Rule Sample Size(n)

1000 900 800 700 600 400 300 200

Ga .029 .045 .051 .048 .061 .049 .064 .054

Gi .049 .068 .054 .042 .047 .038 .032 .014

Gai .071 .070 .051 .069 .059 .047 .045 .022

Table 1: Tree performance under the null hypothesis given different sample size.

Splitting Rule Number of Potential Splits

1000 500 250 100 50 10

Ga .084 .057 .055 .038 .032 .024

Gi .044 .054 .051 .048 .047 .035

Gai .039 .053 .058 .040 .058 .058

Table 2: Tree performance under the null hypothesis given different number of 
potential splits.

Figure 2: Simulation Results: Adjusted Prognostic Tree, Two True Splits. 
The probability of our adjusted prognostic tree algorithm selecting the true 
tree as the final tree.
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choose the final tree out lined in section 2.4 will automatically fail. 
Of the times that the true tree is identified as an optimal sub tree, we 
then calculate the probability that the final tree we select with our 
resampling method is the correct one. Recall that the structure of the 
true tree is shown in Figure1.

For the prognostic tree, Figure 2 shows the probability of selecting 
the true tree when it has two splits and Figure 3 shows the power 
when the true tree has one split. Figure 4 and 5 show the probability 
of identifying the true tree as an optimal sub tree when the true tree 
has two and one splits respectively. Figures 6, 7, 8, and 9 show the 
results for the interaction tree. The effect of modifying our simulation 
parameters is very similar across all splits, probabilities, and true tree 
structures.

In general the power to identify and select the correct tree increase 
as n (and the underlying number of events) increases, the effect size 
increases, and the split becomes more balanced. Although the power 
decrease as the number of potential splits increases, this decrease is 

relatively small, and it is quite robust to the high dimension of the 
covariate space. The power to identify the true tree as an optimal sub 
tree is usually quite high. See Figure 4, 5, 8 and 9 for more detail.

Table 3 and 4 show that the power to choose the correct tree 
decreases when the censoring increases to 40% and 60%. Unbalanced 
2:1 treatment, weak correlation between the associated SNP and the 
confounder, and strong correlation between the associated SNP and 
the confounder have relatively little impact on the power to choose 
the correct tree. The power to identify the correct tree as an optimal 
sub tree remains high even with 40% and 60% censoring.

Prognostic tree results
When the true tree has two splits the power to select the correct 

tree decreases sharply when n<750, going from 90% at 750 down to 
68% at 500, and 26% at

250. The power stays around 94% from 1000 to 1500. Modifying 

Figure 3: Simulation Results: Adjusted Prognostic Tree, One True Split. The 
probability of our adjusted prognostic tree algorithm selecting the true tree 
as the final tree.

Figure 4: Simulation Results: Adjusted Prognostic Tree, Two True Splits. The 
probability of our adjusted prognostic tree algorithm selecting the true tree as 
an optimal sub tree.

Figure 5: Simulation Results: Adjusted Prognostic Tree, One True Split. The 
probability of our adjusted prognostic tree algorithm selecting the true tree as 
an optimal sub tree.

Figure 6: Simulation Results: Adjusted Interaction Tree, Two True Splits. The 
probability of our adjusted iteration tree algorithm selecting the true tree as 
the final tree.
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the balance of the split has a similar effect, with the power decreasing 
sharply when the balance is less than 1:4, going from 85% at 1:4, down 
to 69% at 1:57, 47% at 1:9 and 27% at 1:19. As the split becomes more 
balanced than 1:4 the power increases steadily until it reaches 93% 
when balanced. The power increases linearly from 24% to 88% as the 
effect size has increased from 1.3 to 1.8. The power goes to 92% at 1.9 
and reaches 94% at 2.25. The power is quite robust to the number of 
potential splits, going from 92% at 10 potential splits, to 90% at 100, 
87% at 500, and 86% at 1000.

When the true tree has one split the power to select the correct 
tree decreases sharply when n<400, going from 91% at 400 down to 
91% at 300, and 52% at 400. The power increases to 9% at 500 and 
stays relatively flat until 1000. Varying the balance of the split has a 
similar effect. The power decreases sharply when the balance is less 
than 1:3 going from 92% at 1:3 down to 83% at 1:4, 70% at 1:57, 50% 
at 1:9 and 29% at 1:19. The power reaches 94% at 1:1.86, and reaches 
95% when balanced. The power increases linearly from 16% to 81% 

as the effect size is increased from 1.2 to 1.7. The power goes to 87% 
at 1.8, 93% at 1.9 and 95% at 2. The power is extremely robust to the 
number of potential splits, staying around 94% from 10 to1000.

Interaction tree results
When the true tree has two splits the power to select the correct 

tree decreases sharply when n<1000, going from 90% at 1000 down to 
78% at 750, 50% at 500, and 11% at 250. The power increases to 94% at 
1250 and reaches 95% at 1500. Modifying the balance of the split has 
a similar effect, with the power decreasing sharply when the balance 
is less than 1:4, going from 80% at 1:4, down to 69% at 1:57, 38% at 
1:9 and 12% at 1:19. As the split becomes more balanced than 1:4 
the power increases steadily until it reaches 89% at 1:1.5, and finally 
reaches 90% at 1:1. The power increases linearly from 34% to 71% as 
the effect size is increased from 2 to 2.75. The power goes to 79% at 3, 
90% at 3.5 and 95% at 4. The power is extremely robust to the number 
of potential splits, staying around 92% from 10 to 1000.

When the true tree has one split the power to select the correct 
tree decreases sharply when n<500, going from 92% at 500 down to 
83% at 400, 69% at 300, and 40% at 200. The power increases to 96% at 
600 stays fairly stable, increasing to 97% at 1000. Varying the balance 
of the split has a similar effect. The power decreases sharply when the 
balance is less than 1:4, going from 78% at 1:4, down to 61% at 1:57, 
40% at 1:9 and 16% at 1:19. Increasing the balance past 1:4 raises the 
power steadily until it reaches 92% at 1:2.5. The power is then stable 
until it is balanced. The power increases linearly from 37% to 76% as 
the effect size is increased from 2 to 2.75. The power goes to 83% at 3, 
92% at 3.5 and 96% at 4. The power is quite robust to the number of 
potential splits, going from 94% at 10 potential splits, to 92% at 100 
and 89% at1000.

Application to randomized clinical trial
Head and neck Cancer (HNC) is the 5th most common type of 

cancer world-wide, with 650,000 new cases per year [17]. Most patients 
present with locally-advanced disease, with 5 year Overall Survival 
(OS) rates of about 50%, which have not improved over the decades 
[18]. The use of antioxidant vitamins to supplement chemo and 

Figure 7: Simulation Results: Adjusted Interaction Tree, One True Split. The 
probability of our adjusted iteration tree algorithm selecting the true tree as 
the final tree.

Figure 8: Simulation Results: Adjusted Interaction Tree, Two True Splits. The 
probability of our adjusted interaction tree algorithm selecting the true tree as 
an optimal sub tree.

Figure 9: Simulation Results: Adjusted Interaction Tree, One True Split. The 
probability of our adjusted interaction tree algorithm selecting the true tree as 
an optimal sub tree.
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radiation therapy in cancer patients has had conflicting results. Some 
studies have shown that this regime leads to better survival outcomes, 
while others have shown that it leads to worse [19]. It is possible that 
this conflicting evidence could be driven by complex gene-treatment 
interactions. To explore such genetic hypotheses one must take care 
to control for population stratification, which is a major source of 
spurious results in genetic studies defined as the difference in allele 
frequencies in patients stemming from their ancestral differences 
[20]. The standard way to control for population stratification is to 
adjust for the main principal components of the ancestral differences 
[21]. Therefore we will use our adjusted interaction survival tree 
method to find subgroups of patients that respond most differently to 
antioxidant vitamins based on their genetic signature, while adjusting 
for the main principal components of their ancestral differences.

We analyzed the recurrence free survival of 540 patients 
with HNC from a randomized α-tocopherol/β-carotene placebo-
controlled Genome Wide Association Study (GWAS) with 620,901 
Single-Nucleotide Polymorphism (SNPs) [22]. After standard 
genetic quality control procedures, 515 patients, 261 randomized 
to the treatment arm and 254 randomized to a placebo provided 
genotype information for 543,873 SNPs. We calculated the principal 
components of the ancestral differences of the patients, and adjusted 
our tree by the top three. We built a tree with 10 splits from the 100 
most prognostically significant SNPs. The dominant model was used 
for each SNP, transforming the SNP variable to an indicator of having 

G # Splits Standard 60% 
Censor

40% 
Censor

2:1 
treat

Strong 
Corr

Weak 
Corr

Gai 2 0.90 0.43 0.75 0.84 0.89 0.92

Gai 1 0.92 0.56 0.84 0.89 0.92 0.93

Gi 2 0.92 0.46 0.75 0.84

Gi 1 0.96 0.56 0.83 0.90

Ga 2 0.93 0.56 0.83 0.87 0.94

Ga 1 0.95 0.73 0.91 0.90 0.94

Table 3: Tree performance under extended simulation settings. For each of the 
three simulated splitting rules Gai, Gi, and Ga and with true tree structures of 1 
and 2 splits, the probability that the pruning algorithm picks the true tree as an 
optimal sub tree is shown. The result from the standard simulation is compared 
with simulations with 60% censoring, 40% censoring, 2:1 unbalanced treatment, 
strong correlation between the associated SNP and the confounder and 
weak correlation between the associated SNP and the confounder. Extended 
simulation settings not relevant to a particular splitting rule are omitted.

G # Splits Standard 60% 
Censor

40% 
Censor

2:1 
treat

Strong 
Corr

Weak 
Corr

Gai 2 0.993 0.705 0.971 0.988 0.996 0.990

Gai 1 1.000 0.895 0.988 0.997 0.998 1.000

Gi 2 0.990 0.728 0.970 0.982

Gi 1 1.000 0.932 0.987 0.999

Ga 2 0.999 0.869 0.982 0.996 0.999

Ga 1 1.000 0.966 0.998 0.996 1.000

Table 4: Tree performance under extended simulation settings. For each of the 
three simulated splitting rules Gai, Gi, and Ga and with true tree structures of 1 
and 2 splits, the probability that the pruning algorithm picks the true tree as the 
final sub tree is shown. The result from the standard simulation is compared 
with simulations with 60% censoring, 40% censoring, 2:1 unbalanced treatment, 
strong correlation between the associated SNP and the confounder and 
weak correlation between the associated SNP and the confounder. Extended 
simulation settings not relevant to a particular splitting rule are omitted.

at least one minor allele. We pruned the tree with 1,000 boot strap 
samples and penalized each split by two. The final tree can be seen in 
Figure 10. Inside each node is the hazard ratio of treatment. A hazard 
ratio greater than 1 indicates that taking the antioxidant vitamin leads 
to a worse outcome than taking the placebo, while a hazard ratio less 
than 1 indicates that taking the vitamin leads to a better outcome. 
Although this is the best tree according to the automated pruning 
process, the tree can be further pruned by domain experts to remove 
statistically significant but clinically insignificant splits. Our method 
can identify subgroups of patients with specific genetic signatures for 
which the treatment has high efficacy.

Discussion and Conclusion
The novel methods we have introduced can help translational 

research in genetic studies and personalized medicine. Scientists can 
use our methods to control for confounders when identifying complex 
GxG and GxE interactions or identifying the best treatment choice for 
patients based on their genetic profile. Moreover we have shown that 
the interaction survival tree can perform well with the large number of 
genetic factors often found in personalized medicine research. Once 
a tree is created and subgroups are identified, summary statistics such 
as hazard ratios of treatment, Kaplan-Meier curves [23], and median 
survival times for each group can be presented to clinicians. They can 
then use t statistics, in combination with their clinical consideration 
to classify the prognosis or select the best treatment to their patients 
while controlling for potential confounders. Simulations have 
shown that the probability of selecting the wrong tree under the null 
hypothesis has been well controlled (at only 1.4-8.4%) and that the 
power of selecting the true tree under the alternative hypothesis is 
usually high. To have adequate power there should be a sufficiently 
large number of events and interactive effect between the split 
and treatment. One must be particularly aware of the balance of 
the potential splits as power decreases dramatically for splits with 

Figure 10: Real data adjusted interaction tree. The final tree selected by our 
pruning algorithm. The hazard ratio of treatment for each subgroup is written 
inside each node. The name of the SNP being split is written beside each 
node. The labels1 and 0 are an indicator of having at least one copy of them 
in oral lele in the respective SNP. 
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balance worse than1:4. Therefore, these methods will likely be under 
powered when used for genetic markers (i.e. SNPs) with low minor 
allele frequency. If these criteria are met, then our method is very 
robust to the number of potential splits, with the power being stable 
with a large number of covariates (up to 1000 in the simulations). 
Using a more efficient implementation of the algorithm and parallel 
computing, models with an even larger number of potential splits 
should also perform well.

In addition to being scientifically relevant, adjusting for 
confounders in the splitting rule seems to have statistical benefits. 
Our simulations have shown that adjusting for a confounder is much 
more efficient than creating a new split. Indeed, we needed to double 
our sample size from 500 to 1000 to have similar power when the true 
tree structure changed from one to two splits, however controlling 
for 4 confounders only resulted in a slight drop in power. Further 
research into splitting rules that move more of the modelling into 
the splits themselves rather than the topology of the tree seems worth 
pursuing.

In the pruning algorithm the cross-validated goodness of split is 
calculated as the mean of the goodness-of-split of trees built from a 
single fold of data.
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One must be especially careful about the number of folds, f, since 

the sample size |Lj|≈n/f used to make the tree Tj,k must be large enough 
to support the true tree structure. The number of folds can then be 
seen as a sparsity parameter with more folds resulting in sparser trees. 
Similar consideration must also be taken when choosing the number 
of confounding variables to include in the model. When working 
with such small sample sizes, along with the usual concerns about 
the instability of asymptotic results, the vector corresponding to the 
splits may be deemed computationally singular with the confounding 
variables, leading to G(s, h) = 0 and sparser trees.

When selecting the final tree choosing the penalty parameter 
αc=4 corresponds to the 0.05 significance level of a χ2 random variable 
which is approximately 4. This choice is reasonable when treatment 
has only two levels, because the ‘honest’ LRT statistic of the split will 
be asymptotically χ2. In general, when we have k levels of treatment 
the ‘honest’ LRT statistic of the split will be asymptotically χ2 and 
the choice of αc could be chosen as the 0.05 significance level of a χ2 
random variable.

In addition to the LRT statistic, we also tested using other novel 
splitting methods such as the Wald test statistic and absolute value of 
the fitted parameter of an underlying Cox model. All three splitting 
rules were found to have similar performance, and the LRT statistic 
was chosen as it is the most generalizable. Indeed the recursive 
partitioning algorithm we use is not dependent on the particular 
choice of model, and other likelihood based models could be used. 
With some slight modifications the idea of splitting by the ratio of two 
likelihoods could be extended to any situation in which a likelihood 
space can be defined.

The current adjusted survival tree models are developed based on 
the Cox models. However, for the real research studies, some time 
to event outcomes may not fit the proportional hazard assumption. 

We suggest applying proportional hazard assumption test on the data 
before applying the survival tree model. Further extensions of the 
adjusted survival tree model are in development to deal with other 
types of time to event outcomes.

Author’s Contributions
WX and RD Bareco-first authors and are equal contributors to 

the development and implementation of the adjusted survival tree 
methodology. IB, FM, and GL provided data for the application of 
the methodology to the randomized clinical trial.

Acknowledgement
The authors would like to thank the COMBIEL training program 

for supporting this study, and RDB thanks the High Impact Clinical 
Trial program of the Ontario Institute of Cancer Research for his 
generous funding.

References
1. James N Morgan and John A Sonquist. Problems in the analysis of survey 

data, and a proposal. Journal of the American Statistical Association. 1963; 
58: 415-434.

2. Leo Breiman, Jerome H Friedman, Richard A Olshen, Charles J Stone. 
Classification and regression trees. Wads worth & brooks. Monterey, CA. 
1984.

3. Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P, et al. SNP-based 
analysis of genetic substructure in the German population. Hum Hered. 2006; 
62: 20-29.

4. Hennis AJ, Hambleton IR, Wu SY, Leske MC, Nemesure B. Barbados 
National Cancer Study Group. Breast cancer incidence and mortality in a 
Caribbean population: comparisons with African-Americans. Int J Cancer. 
2009; 124: 429-433.

5. Su X, Fan J. Multivariate survival trees: a maximum likelihood approach 
based on frailty models. Biometrics. 2004; 60: 93-99.

6. Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, Michael S Lauer. 
Random survival forests. The Annals of Applied Statistics. 2008; 841-860.

7. Su X, Zhou T, Yan X, Fan J, Yang S. Interaction trees with censored survival 
data. Int J Biostat. 2008; 4: Article 2.

8. Sevin BU, Lu Y, Bloch DA, Nadji M, Koechli OR, Averette HE. Surgically 
defined prognostic parameters in patients with early cervical carcinoma. A 
multivariate survival tree analysis. Cancer. 1996; 78: 1438-1446.

9. Chen J, Yu K, Hsing A, Therneau TM. A partially linear tree-based regression 
model for assessing complex joint gene-gene and gene-environment effects. 
Genet Epidemiol. 2007; 31: 238-251.

10. Evans WE, Relling MV. Moving towards individualized medicine with 
pharmacogenomics. Nature. 2004; 429: 464-468.

11. Aspinall MG, Hamermesh RG. Realizing the promise of personalized 
medicine. Harv Bus Rev. 2007; 85: 108-117, 165.

12. Lesko LJ. Personalized medicine: elusive dream or imminent reality? Clin 
Pharmacol Ther. 2007; 81: 807-816.

13.  Hamburg MA, Collins FS. The path to personalized medicine. New England 
Journal of Medicine. 2010; 363: 301-304.

14. Yusuf S, Wittes J, Probstfield J, Tyroler HA. Analysis and interpretation of 
treatment effects in subgroups of patients in randomized clinical trials. JAMA: 
the journal of the American Medical Association. 1991; 266: 93-98.

15. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in 
developing models, evaluating assumptions and adequacy, and measuring 
and reducing errors. Stat Med. 1996; 15: 361-387.

16. Leblanc M, Crowley J. Survival trees by goodness of split. Journal of the 
American Statistical Association. 1993; 88: 457-467.

http://www.cs.nyu.edu/~roweis/csc2515-2006/readings/morgan_sonquist63.pdf
http://www.cs.nyu.edu/~roweis/csc2515-2006/readings/morgan_sonquist63.pdf
http://www.cs.nyu.edu/~roweis/csc2515-2006/readings/morgan_sonquist63.pdf
https://books.google.co.in/books/about/Classification_and_Regression_Trees.html?id=JwQx-WOmSyQC&redir_esc=y
https://books.google.co.in/books/about/Classification_and_Regression_Trees.html?id=JwQx-WOmSyQC&redir_esc=y
https://books.google.co.in/books/about/Classification_and_Regression_Trees.html?id=JwQx-WOmSyQC&redir_esc=y
http://www.ncbi.nlm.nih.gov/pubmed/17003564
http://www.ncbi.nlm.nih.gov/pubmed/17003564
http://www.ncbi.nlm.nih.gov/pubmed/17003564
http://www.ncbi.nlm.nih.gov/pubmed/18844211
http://www.ncbi.nlm.nih.gov/pubmed/18844211
http://www.ncbi.nlm.nih.gov/pubmed/18844211
http://www.ncbi.nlm.nih.gov/pubmed/18844211
http://www.ncbi.nlm.nih.gov/pubmed/15032778
http://www.ncbi.nlm.nih.gov/pubmed/15032778
http://arxiv.org/pdf/0811.1645.pdf
http://arxiv.org/pdf/0811.1645.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20231911
http://www.ncbi.nlm.nih.gov/pubmed/20231911
http://www.ncbi.nlm.nih.gov/pubmed/8839549
http://www.ncbi.nlm.nih.gov/pubmed/8839549
http://www.ncbi.nlm.nih.gov/pubmed/8839549
http://www.ncbi.nlm.nih.gov/pubmed/17266115
http://www.ncbi.nlm.nih.gov/pubmed/17266115
http://www.ncbi.nlm.nih.gov/pubmed/17266115
http://www.ncbi.nlm.nih.gov/pubmed/15164072
http://www.ncbi.nlm.nih.gov/pubmed/15164072
http://www.ncbi.nlm.nih.gov/pubmed/17972499
http://www.ncbi.nlm.nih.gov/pubmed/17972499
http://www.ncbi.nlm.nih.gov/pubmed/17505496
http://www.ncbi.nlm.nih.gov/pubmed/17505496
http://www.ncbi.nlm.nih.gov/pubmed/20551152
http://www.ncbi.nlm.nih.gov/pubmed/20551152
http://www.ncbi.nlm.nih.gov/pubmed/0002046134
http://www.ncbi.nlm.nih.gov/pubmed/0002046134
http://www.ncbi.nlm.nih.gov/pubmed/0002046134
http://www.ncbi.nlm.nih.gov/pubmed/8668867
http://www.ncbi.nlm.nih.gov/pubmed/8668867
http://www.ncbi.nlm.nih.gov/pubmed/8668867
http://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476296
http://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476296


Austin Biom and Biostat 2(4): id1027 (2015)  - Page - 08

Wei Xu Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

17. Jemal A. Global burden of cancer: opportunities for prevention. Lancet. 2012; 
380: 1797-1799.

18. Pfister DG, Ang KK, Brizel DM, Burtness BA, Cmelak AJ, Colevas AD, et al. 
Head and neck cancers. J Natl Compr Canc Netw. 2011; 9: 596-650.

19. Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB. Should 
supplemental antioxidant administration be avoided during chemotherapy 
and radiation therapy? J Natl Cancer Inst. 2008; 100: 773-783.

20. Cardon LR, Palmer LJ. Population stratification and spurious allelic 
association. Lancet. 2003; 361: 598-604.

21. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 
Principal components analysis corrects for stratification in genome-wide 
association studies. Nat Genet. 2006; 38: 904-909.

22. Bairati I, Meyer F, Jobin E, Gélinas M, Fortin A, Nabid A, et al. Antioxidant 
vitamins supplementation and mortality: a randomized trial in head and neck 
cancer patients. Int J Cancer. 2006; 119: 2221-2224.

23. Kaplan EL, Meier P. Non parametric estimation from in-complete observations. 
Journal of the American statistical association. 1958; 53: 457-481.

Citation: Xu W, Bel RD, Bairati I, Meyer F and Liu G. Adjusted Survival Tree Models for Genetic Association: 
Prognostic and Predictive Effects. Austin Biom and Biostat. 2015;2(4): 1027.

Austin Biom and Biostat - Volume 2 Issue 4 - 2015
Submit your Manuscript | www.austinpublishinggroup.com 
Xu et al. © All rights are reserved

http://www.ncbi.nlm.nih.gov/pubmed/23079587
http://www.ncbi.nlm.nih.gov/pubmed/23079587
http://www.ncbi.nlm.nih.gov/pubmed/21636536
http://www.ncbi.nlm.nih.gov/pubmed/21636536
http://www.ncbi.nlm.nih.gov/pubmed/18505970
http://www.ncbi.nlm.nih.gov/pubmed/18505970
http://www.ncbi.nlm.nih.gov/pubmed/18505970
http://www.ncbi.nlm.nih.gov/pubmed/12598158
http://www.ncbi.nlm.nih.gov/pubmed/12598158
http://www.ncbi.nlm.nih.gov/pubmed/16862161
http://www.ncbi.nlm.nih.gov/pubmed/16862161
http://www.ncbi.nlm.nih.gov/pubmed/16862161
http://www.ncbi.nlm.nih.gov/pubmed/16841333
http://www.ncbi.nlm.nih.gov/pubmed/16841333
http://www.ncbi.nlm.nih.gov/pubmed/16841333
http://www.biecek.pl/statystykaMedyczna/2281868.pdf
http://www.biecek.pl/statystykaMedyczna/2281868.pdf

	Title
	Abstract
	Introduction
	Methods
	Algorithm overview
	Splitting
	Pruning
	Selection of the final tree
	Simulation

	Results
	Prognostic tree results
	Interaction tree results
	Application to randomized clinical trial

	Discussion and Conclusion
	Acknowledgement
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

