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Abstract

A catchment area is the geographic area and population from which a health 
service center draws patients. Defining a catchment area allows the service 
center to describe its primary patient population and assess how well it meets 
the needs of patients within the catchment area. A catchment area definition is 
required for cancer centers applying for NCI-designated Cancer Center status. 
In this research, we estimated diagnosis catchment areas for the Massey 
Cancer Center (MCC) at Virginia Commonwealth University using a Generalized 
Additive Model (GAM) framework. We estimated diagnosis catchment areas for 
all cancers based on individual-level Virginia state cancer registry data. We used 
a GAM with a spatial smoother to model the residual log odds of being diagnosed 
with cancer at MCC after accounting for several covariates, including age, race, 
ethnicity, gender, and health insurance type. In addition, we used a Generalized 
Additive Mixed Model (GAMM) to account for multiple cancer diagnoses for the 
same patient. To define catchment areas, we identified the geographic areas 
with statistically significant residual log odds of being diagnosed for cancer at 
MCC. The diagnosis catchment area for MCC estimated from the GAM included 
58 counties. Characteristics associated with increased odds of being diagnosed 
with cancer at MCC included black race, Hispanic ethnicity, younger age, no 
health insurance, and Medicaid health insurance.
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area

Abbreviations
GAM: Generalized Additive Model; GAMM: Generalized 

Additive Mixed Model; TPRS: Thin Plate Regression Spline; TPS: 
Thin Plate Spline; GCV: Generalized Cross Validation; UBRE: Un-
Biased Risk Estimator; P-IRLS: Penalized Iteratively Reweighted 
Least Squares; MCC: Massey Cancer Center; VCUHS: Virginia 
Commonwealth University Health System; VCR: Virginia Cancer 
Registry; NCI: National Cancer Institute; LAD: Local Authority 
District; SKCCC: Sidney Kimmel Comprehensive Cancer Center; 
NYCLIX: New York Clinical Information Exchange 

Introduction
A catchment area is the geographic area and population from 

which a health service center draws patients. Defining a catchment 
area allows a health care facility to describe its primary patient 
population and assess how well it meets the needs of patients within 
the catchment area. A catchment area should capture a significant 
portion of the center’s patient activity and exclude areas whose 
contribution to center activity represents random variation. It should 
also reflect demographic and geographical influences on health center 
activity, including physical barriers to access and competition, and 
be proportional in geographic size to hospital size [1]. For cancer 
centers, a catchment area definition is required by the National 
Cancer Institute (NCI) when applying for NCI-designated Cancer 
Center status. According to the NCI, the catchment area must be 
based on geographically defined boundaries, such as census tracts 
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or counties, and must include the local area surrounding the cancer 
center [2].

Several methods have been used in the literature to 
deterministically define a catchment area for a health care facility. 
Approaches focus on defining the catchment area using a threshold 
value for geographic distance, patient flow, or population size, where 
the geographic area found to be within the threshold composes the 
catchment area. For example, Luo and Qi [3] use a fixed distance 
(e.g., 30 miles) or a road network travel time to define a catchment 
area. Luo and Whippo [4] use a threshold-based population size to 
determine the distance for defining the catchment area. Alexandrescu 
et al. [5] define a catchment area by selecting areas that cumulatively 
account for 80% of hospital patients, and Phibbs and Robinson [6] 
define the catchment area based on the distance radius that contained 
75% or 90% of hospital patients. Baker [7] selects spatial units that 
contained a threshold percent (e.g., 0.5%) of the total facility patient 
activity. The common drawback of these efforts is that the threshold 
is pre-specified and not estimated from the data. 

Several different approaches have been used for estimating a 
catchment area from data. Judge et al. [8] use Thiessen polygons to 
define a catchment area, where the Thiessen polygon for the center 
comprises all points in space that are closest to that center than any 
other facility. This approach assumes that patients will travel to the 
facility that is closest in Euclidean space. A disadvantage of this 
approach is that it does not consider patient data when estimating 
the catchment area. Gilmour [1] uses K-means clustering to define 
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a catchment area for the University College London Hospital in 
England based on three variables at the Local Authority District 
(LAD) level: the Euclidean distance between the hospital and a LAD, 
the proportion of the hospital admissions coming from each LAD, 
and the proportion of a LAD’s total admissions going to the hospital. 
All LADs that provided at least one patient admission to the hospital 
of interest was considered in the K-means clustering. For the hospital 
of interest, the LAD data were divided into two clusters with K=2 
clustering to define a catchment area for the hospital, where K-means 
clustering with K=2 effectively classifies each geographic unit as either 
in or out of the catchment area. An advantage of K-means clustering 
over the threshold approaches is that it estimates the geographic 
extent of the catchment area based on several variables at the area 
level. One shortcoming of the implementation of K-means clustering 
for catchment area delineation by Gilmour [1] is that it does not 
include patient-level covariates.

Another approach used for estimating a catchment area is the 
local spatial scan implemented in the software SaTScan [9]. The local 
spatial scan was created to detect geographic areas of statistically 
significantly elevated disease risk and can generally be used to 
detect a contiguous geographic area that differs statistically in some 
quantity from the surrounding area. Su et al. [10] use the local spatial 
scan statistic to estimate a catchment area for the Sidney Kimmel 
Comprehensive Cancer Center (SKCCC) at Johns Hopkins based on 
Johns Hopkins Hospital Cancer registry patient counts in counties 
in seven adjacent states and the District of Columbia. These authors 
use a Poisson model as the base for the local spatial scan to model 
the rate of SKCCC cancer patient counts per cancer death for each 
county. They define the rate with SKCCC cancer patient counts in the 
numerator and total cancer deaths as the denominator as a surrogate 
for the population with cancer. Onyile et al. [11] also use the local 
spatial scan with a Poisson model for estimating a catchment area 
for a health information exchange in NYC, the New York Clinical 
Information Exchange (NYCLIX), using patient and census data from 
the three adjacent states of New York, New Jersey, and Connecticut. 
The authors calculate the relative risk of visiting the NYCLIX facility 
through the rate of the number of NYCLIX patients in each county 
versus the number of people living in each county according to 
the 2010 US Census. One disadvantage of the local spatial scan for 
estimating catchment areas is that the analysis must be stratified to 
adjust for each covariate of interest, which is problematic for a large 
number of covariates. A limitation of the catchment area analysis of 
Su et al. [10] and Onyile et al. [11] is that the authors used hospital 
patient data and not state registry data, and hence the total cancer 
population in the area was unknown.

In more recent analysis, Wang and Wheeler [12] use a Bayesian 
hierarchical regression modeling approach to estimate catchment 
areas for the Massey Cancer Center (MCC) at the Virginia 
Commonwealth University Health System (VCUHS). Wang and 
Wheeler [12] aggregated Virginia Cancer Registry (VCR) patient 
data to the county level and adjusted for patient gender, age, and race 
with a Bayesian hierarchical logistic regression model with patient 
population strata. To estimate a diagnosis catchment area for MCC, 
the authors used exceedance probabilities to assess unusual clustering 
of patients going to MCC. An advantage of the approach of Wang and 
Wheeler is that Bayesian regression models estimate the catchment 

area stochastically from patient data through exceedance probabilities 
while adjusting for several covariates. One limitation of the analysis in 
Wang and Wheeler [12] is that it adjusted only for a small number of 
covariates aggregated to the county level. The models were limited in 
the number of population group strata due to the presence of patient 
counts of zero for some strata in certain counties. 

As an alternative to the previous approaches, we propose to apply 
Generalized Additive Models (GAMs) and Generalized Additive 
Mixed Models (GAMMs) to estimate a diagnosis catchment area for 
the Massey Cancer Center at VCUHS. GAMs with spatial smoothing 
functions have been applied previously to model spatial variation of 
disease risk in several cancer studies [13-16]. The GAM framework 
is commonly used to determine geographic areas of significantly 
elevated risk for an event while adjusting for covariates. In this paper, 
we use a GAM to estimate a geographic area where the spatial odds 
of being diagnosed with cancer at MCC is significantly elevated while 
adjusting for many patient-level covariates. GAMMs effectively add 
random effects to GAMs to account for structured correlation among 
observations. The use of a GAMM is appropriate in this context due 
to the presence of multiple cancer diagnosis records for some patients 
in the registry data. As far as we know, this is the first use of GAMs 
and GAMMS to estimate a health center catchment area.

Materials and Methods
Study population

We obtained records from the Virginia Cancer Registry for all 
diagnosed cancer patients during years 2009-2011. The VCR data 
included demographic variables gender, race, ethnicity, age, health 
insurance type, reporting hospital, and residential location at the 
time of diagnosis or treatment. Originally, the data contained 160,307 
records and 124,609 patients for the three years of study. We detected 
and deleted duplicated records for the same patient with the same 
cancer, tumor site, and diagnosed date, which was due to reporting 
of the same cancer for the same patient by different hospitals. After 
excluding duplicated records and records with missing values and 
patients living outside Virginia at time of diagnosis, we included 
118,465 records and 112,565 patients in the analysis data set, where 
5,559 patients had more than one cancer diagnosis. Of the total 
records in the analysis data set, 6,286 (5.3%) patients were diagnosed 
at Massey Cancer Center according to the reporting hospital coded 
in the VCR data.

Statistical modeling
We used the VCR cancer patient data to estimate a diagnosis 

catchment area for Massey Cancer Center during 2009-2011. We used 
a generalized additive model to model the odds of being diagnosed 
with cancer at MCC during 2009-2011. A GAM is a semi-parametric 
model extended from a generalized linear model and it has a general 
formula 
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where g(µ) is a link function, α is a model intercept, and fj(.) are 
smoothing functions of covariates xj for j=1,…,p, and ε is the error 
term [17]. The model allows nonlinear functions of covariates to be 
included in the regression equation and avoids restrictions imposed 
by parametric assumptions. GAMs can include functions with two 
or more dimensions, which makes them useful for spatial analysis. 
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Specifically, for spatially referenced binary outcome data, GAMs can 
model the log odds of the event as a linear function of covariates zi 
and a spatial smoothing over geographic locations Si=S1i,S2i for i=1,…
,n, as, 

log[P(yi=1)/p(yi=0)]=α+f(S1i,S2i)+Xiβ  (2) 

where yi=1 for presence of the event and yi=0 for absence of the event, 
β is a vector of linear regression coefficients representing the effects 
of covariates Xi, and f(S1i,S2i) is a bivariate smoothing function. In our 
case, the event of interest is diagnosis of cancer at Massey Cancer 
Center.

We used a Thin Plate Regression Spline (TPRS) [18] as the 
smoothing function. A TPRS is a reduced rank version of the Thin 
Plate Spline (TPS), which is a type of penalized regression spline that 
provides knot-free locations. In general, a kth order spline is a piecewise 
polynomial function of degree k that is continuous and has continuous 
derivatives of orders 1,…, k at its knot locations. A regression spline 
fits a kth order spline with a set of knots at some specified locations. 
The performance of a regression spline depends on good selection 
of the knot locations, which is not trivial. A smoothing spline avoids 
the selection of knot locations by performing a regularized regression 
over the natural spline basis and placing knots at all the observed data 
points x1,…,xn. There is a smoothing parameter that controls how 
smooth the spline is by shrinking away the wiggler basis functions 
as the parameter increases. A TPRS is a computationally convenient 
penalized regression spline that can include two covariates, making it 
ideal as a bivariate smoother over spatial coordinates. TPRS estimates 
parameters by minimizing the sum of squared error and a wiggliness 
penalty term. The objective function for TPRS fitting is

2min || U D T || DT
k k k k k ky δ α λδ δ− − + , subject to T U 0T

k kδ =    (3)

with respect to vectors of coefficients δk and α, where Uk contains 
the first k columns of eigenvectors of the observed predictors, Dk is a 
k×k submatrix of diagonal matrix of eigenvalues, T contains linearly 
independent polynomials, and λ is a smoothing parameter [18]. The 

smoothing parameter estimation problem is solved in the R package 
mgcv [19] by using Generalized Cross Validation (GCV) when the 
scale is unknown and using the Un-Biased Risk Estimator (UBRE) 
criterion when the scale is known. The model coefficients for GAMs 
with TPRS smoothers are estimated by maximizing the penalized 
likelihood function using a Penalized Iteratively Reweighted Least 
Squares (P-IRLS) algorithm. More details are available in [18].

To take into account multiple cancer diagnosis for some patients, 
we fitted a Generalized Additive Mixed Model (GAMM) with subject-
level random effects. The GAMM model structure is 

log[P(yi=1)/p(yi=0)]=α+f(S1i,S2i)+Xiβ+Zib  (4)

where Zi is a row of a random effects model matrix and b~N(0,ψθ) is 
a vector of random effect coefficients with unknown positive definite 
covariance matrix ψθ with parameter θ. In our model, the random 
effect bj was included for each record i for subject j. The random 
effects added to a GAM are parametric terms penalized by a ridge 
penalty, which is equivalent to an assumption that the coefficients are 
independent and identically distributed normal random effects [18]. 
GAMMs are also implemented in the R package mgcv. 

In the GAM and GAMM, we adjusted for several covariates that 
could be associated with odds of being diagnosed with cancer at MCC. 
The patient characteristics of race, gender, age, and health insurance 
status were included in the models. Specifically, we included in X age 
at diagnosis; the gender variables male and other (hermaphrodite, 
transsexual, unknown) gender with female as the reference; the race 
variables black, other non-white race, and unknown race with white 
as the reference; Hispanic ethnicity with non-Hispanic ethnicity as 
the reference; and the health insurance variables of no insurance, 
self-pay, Medicaid, Medicare, other (TRICARE, military, Veterans 
Affairs, Indian/Public Health Service) insurance, and unknown 
insurance with private (managed care, HMO, PPO, or fee-for-service) 
insurance as the reference.

GAM GAMM

Variable Coefficient Standard Error p-value Odds Ratio Coefficient Standard Error p-value Odds Ratio

Intercept -2.6136 0.0791 <0.001 - -2.6135 0.0791 <0.001 -

Age -0.0347 0.0012 <0.001 0.9659 -0.0347 0.0012 <0.001 0.9659

Male -0.0493 0.0293 0.093 0.9519 -0.0493 0.0293 0.093 0.9519

Other gender 3.1554 1.1672 0.007 23.4635 3.1554 1.1672 0.007 23.4629

Black 0.3786 0.0325 <0.001 1.4603 0.3786 0.0325 <0.001 1.4602

Other race 0.1481 0.1057 0.161 1.1597 0.1482 0.1057 0.161 1.1597

Unknown race -0.7816 0.1942 <0.001 0.4577 -0.7816 0.1942 <0.001 0.4577

Hispanic 0.7274 0.0498 <0.001 2.0696 0.7274 0.0498 <0.001 2.0696

No insurance 1.4820 0.0786 <0.001 4.4017 1.4820 0.0786 <0.001 4.4017

Self-pay 1.1581 0.0754 <0.001 3.1838 1.1581 0.0754 <0.001 3.1838

Medicaid 0.8710 0.0661 <0.001 2.3894 0.8710 0.0661 <0.001 2.3894

Medicare 0.2384 0.0402 <0.001 1.2692 0.2384 0.0402 <0.001 1.2692

Other insurance -1.1022 0.1243 <0.001 0.3321 -1.1022 0.1243 <0.001 0.3321

Unknown insurance -0.9095 0.0866 <0.001 0.4027 -0.9095 0.0866 <0.001 0.4027

Table 1: Parameter estimates and odds ratios from Generalized Additive Model (GAM) and Generalized Additive Mixed Model (GAMM) to estimate catchment area 
for Massey Cancer Center.
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To estimate the catchment area from the models, we conducted 
a Monte Carlo assessment of the local significance of the spatial 
smooth term in the GAM and GAMM. The permutation procedure is 
based on Monte Carlo randomization of event labels and associated 
covariates while conditioning on the number and location of 
observed data points. Randomization of labels is consistent with the 
null hypothesis of constant risk of the event throughout the study 
area [20]. The model is fitted to each of 999 permuted data sets and 
then is used for prediction on a 50x50 grid that covers the study area. 
This builds a point-wise distribution of the spatial smooth term under 
the null hypothesis at each grid cell. The spatial smooth prediction 
from the model for the observed data is then compared with the point 
-wise distribution at each grid cell to identify areas with significantly 
elevated risk of the event. Specifically, the spatial predictions from 
the observed and permuted data are ranked in ascending order and 
significant risk areas are identified in this case by the points that have 
observed spatial log-odds that are above 95% of the ranked values of 
the point-wise permutation distribution. To create the catchment area 
map, we calculated the spatial intersection between the significant 
spatial grid cells and the counties in Virginia.

Results and Discussion
The odds of being diagnosed with cancer at Massey Cancer Center 

was associated with several variables (Table 1). The parameter estimates 
were very similar between the GAM and GAMM, with differences only 
in the fourth decimal place for two parameters (intercept and other 
race). Hence, accounting for multiple observations for some subjects 
had little effect on the estimates of regression relationships. Odds of 
being diagnosed with cancer at MCC was statistically significantly 
associated with all the included covariates except other race and male 
gender, which was marginally significant (p-value = 0.09). Covariates 
significantly associated with increased odds of being diagnosed at 
MCC included other gender, black race, Hispanic ethnicity, no health 

insurance, self-pay, Medicaid, and Medicare insurance. Covariates 
significantly associated with decreased odds of being diagnosed at 
MCC included age, unknown race, and other health insurance. The 
fits of the GAM and GAMM were the same, with both explaining 
32.6% of the deviance.

The spatial component of the GAM and GAMM was highly 
significant (approximate p-value < 0.001). The catchment area for 
MCC estimated from the spatial model component comprises 58 
counties (Figure 1). The large catchment area covers central and 
eastern Virginia. It stretches to the northern and eastern coasts of 
Virginia, but does not include the Eastern Shore. This geographic 
definition of the diagnosis catchment area is similar to a previous 
definition determined from a Bayesian hierarchical logistic regression 
model using exceedance probabilities for county random effects 
[12]. That catchment area comprised 54 counties, including the two 
Eastern Shore counties, but did not stretch as far north or southeast.

To compare cancer patient populations living inside and outside 
the MCC catchment area, we calculated summaries for certain 
patient characteristics inside and outside the estimated catchment 
area and stratified by diagnosis hospital (MCC vs. other) (Table 2). 
The summaries show that MCC patient population living inside the 
catchment area was younger and had greater proportions of women, 
blacks, Hispanics, patients with no insurance, patients who self-
pay, and patients who used Medicaid compared with the patient 
population living inside the catchment area and diagnosed elsewhere. 
For example, the patient population diagnosed at MCC living inside 
the catchment area was 37.53% black, whereas the patient population 
diagnosed elsewhere and living inside the MCC catchment area was 
25.10% black. Similarly, MCC patients living inside the catchment 
area were almost five times more likely to be uninsured (5.81%) 
compared with patients diagnosed elsewhere and living inside the 
catchment area (1.20%). 

The MCC patient population living outside the catchment area 
was younger and more likely to be black (24.96%) compared with the 
patient population living outside the catchment area and diagnosed 
elsewhere (13.45%). Proportions of patients without health insurance, 
who self-pay, and used Medicaid were several times higher in the 
MCC patent population living outside the catchment area compared 
with the patient population living outside the MCC catchment area 
and diagnosed elsewhere. Comparing the MCC patient populations 
inside and outside the MCC catchment area, the patient population 
living inside the catchment area was more likely to be black (37.53% 

Figure 1: Virginia counties with Massey Cancer Center catchment area (red 
fill) estimated from a GAM.

Characteristic MCC Patient Inside CA Non-MCC Patient Inside CA MCC Patient Outside CA Non-MCC Patient Outside CA

Age 57.52 64.91 56.68 63.4

Male 45.01% 49.74% 55.01% 46.61%

Black 37.53% 25.10% 24.96% 13.45%

Other race 1.93% 1.38% 3.56% 4.30%

Hispanic 12.59% 6.02% 12.05% 13.56%

No insurance 5.81% 1.20% 6.96% 1.57%

Self-pay 5.51% 1.51% 6.28% 2.28%

Medicaid 7.07% 2.35% 10.87% 3.17%

Medicare 34.40% 44.84% 31.07% 41.79%

Table 2: Cancer patient summary inside and outside estimated Catchment Area (CA) for Massey Cancer Center (MCC).
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vs. 24.96%) and Hispanic (12.59% vs. 12.05%). Proportions of 
patients who were uninsured, self-pay or on Medicaid were higher 
in the MCC population living outside the catchment area. However, 
proportions of patients without health insurance or on Medicaid 
were greater outside the MCC catchment area than inside for both 
patients diagnosed at MCC and elsewhere. 

Summaries of the underlying county populations according to 
2010 US Census numbers stratified by catchment area status (inside 
vs. outside) reveal that the mean county proportion of blacks was 
much higher inside the catchment area (27.36%) than outside the 
catchment area (12.38%) (Table 3). As a measure of socioeconomic 
status, mean percent of homes that were vacant was slightly higher 
inside the catchment area (16.32%) than outside the area (16.16%).

Conclusion
In this paper, we used generalized additive models and generalized 

additive mixed models to estimate a diagnosis catchment area for 
Massey Cancer Center using state cancer registry data. We adjusted 
for patient age, gender, race, ethnicity, and health insurance status in 
both models. We also accounted for correlation in diagnosis records 
when subjects had multiple cancer diagnoses. Our results showed that 
the catchment area for MCC was quite large (n = 58 counties), which 
reflects the significant presence of this large, urban cancer center in 
Virginia. We also found that Massey Cancer Center serves a relatively 
large proportion of black, Hispanic, uninsured, self-pay, and Medicaid 
cancer patients. Blacks and Hispanics were significantly more likely 
to be diagnosed with cancer at Massey Cancer Center compared 
with whites and non-Hispanics, respectively. Cancer patients on 
Medicare and Medicaid and those with no health insurance or who 
self-pay were significantly more likely to be diagnosed with cancer 
at Massey Cancer Center when compared with patients with private 
health insurance. In addition to its significant presence, MCC appears 
to play an important role as a health care provider for traditionally 
underserved populations of cancer patients.

While GAMs have been used repeatedly in the disease mapping 
literature, the application of GAMs and GAMMs for estimating 
catchment areas is novel. Many of the existing methods for defining 
a catchment area are not probability-based or do not adjust for 
many covariates simultaneously. In contrast with other approaches 
for catchment area analysis, GAMs estimate the catchment area 
stochastically from the data and can also adjust for many covariates 
flexibly through splines. In addition, while we presented the catchment 
area estimate at the county level, any spatial scale could be used with 
individual patient data because we predicted the spatial log odds over 
a grid. The use of GAMs and GAMMs for estimating catchment areas 

Characteristic County Inside CA County Outside CA

Median Age 41.04 40.35

Age 65+ 15.17% 16.04%

Male 49.83% 48.87%

Black 27.36% 12.38%

Hispanic 3.78% 5.00%

Vacant Homes 16.32% 16.16%

Table 3: County population characteristics from 2010 US Census inside and 
outside Catchment Area (CA) for Massey Cancer Center.

should be applicable to other large hospitals, particularly when cancer 
registry data are available and covariate effects are of interest.

Acknowledgement
We gratefully acknowledge support from the Massey Cancer 

Center to conduct this study. We thank Cathy Bradley, Chris Gillam, 
Laurel Gray, Lynne Penberthy, and Valentina Petkov for assistance in 
acquiring the data used in this study. 

References
1. Gilmour SJ. Identification of Hospital Catchment Areas Using Clustering: An 

Example from the NHS. Health Serv Res. 2010; 45: 497-513.

2. National Institutes of Health, National Cancer Institute, Office of Cancer 
Centers. Policies and Guidelines Relating to the P30 Cancer Center Support 
Grant. 2013; 1-56.

3. Luo W, Qi Y. An Enhanced Two-step Floating Catchment Area (E2SFCA) 
Method for Measuring Spatial Accessibility to Primary Care Physicians. 
Health Place. 2009; 15: 1100-1107.

4. Luo W, Whippo T. Variable Catchment Sizes for the Two-step Floating 
Catchment Area (2SFCA) Method. Health Place. 2012; 18: 789-795.

5. Alexandrescu R, O’Brien SJ, Lyons RA, Lecky FE. A Proposed Approach 
in Defining Population-based Rates of Major Injury from a Trauma Registry 
Dataset: Delineation of Hospital Catchment Areas (I). BMC Health Serv Res. 
2008; 8:80.

6. Phibbs CS, Robinson JC. A Variable-radius Measure of Local Hospital Market 
Structure. Health Serv Res. 1993; 28: 313-324.

7. Baker LC. Measuring Competition in Health Care Markets. Health Serv Res. 
2001; 36: 223-251.

8. Judge A, Welton NJ, Sandhu J, Ben-Shlomo Y. Geographical Variation in the 
Provision of Elective Primary Hip and Knee Replacement: The Role of Socio-
demographic, Hospital and Distance Variables. Journal of Public Health. 
2009; 31: 413-422.

9. Kulldorff M. A Spatial Scan Statistic. Communications in Statistics: Theory 
and Methods. 1997; 26: 1481-1496.

10. Su SC, Kanarek N, Fox MG, Guseynova A, Crow S, Ouabtadisum S. Spatial 
Analyses Identify the Geographic Source of Patients at a National Cancer 
Institute Comprehensive Cancer Center. Clinical Cancer Research. 2010; 16: 
1065-1072.

11. Onyile A, Vaidya SR, Kuperman G, Shapiro JS. Geographical Distribution of 
Patients Visiting a Health Information Exchange in New York City. J Am Med 
Inform Assoc. 2012; 20: 125-130.

12. Wang A, Wheeler DC. Catchment Area Analysis using Bayesian Regression 
Modeling. Cancer Informatics. 2015; 14: 71-79.

13. Webster T, Vieira V, Weinberg J, Aschengrau A. Method for Mapping 
Population-based Case-control Studies: An Application Using Generalized 
Additive Models. Int J Health Geogr. 2006; 5: 26.

14. Vieira VM, Webster TF, Weinberg JM, Aschengrau A. Spatial-temporal 
Analysis of Breast Cancer in Upper Cape Cod, Massachusetts. Int J Health 
Geogr. 2008; 7: 46.

15. Wheeler DC, De Roos AJ, Cerhan JR, Morton LM, Severson R, Cozen W, 
et al. Spatial-temporal Analysis of Non-hodgkin Lymphoma in the NCI-SEER 
NHL Case-control Study. Environ Health. 2011; 10: 63.

16. Wheeler DC, Ward MH, Waller LA. Spatial-temporal Analysis of Cancer Risk 
in Epidemiologic Studies with Residential Histories. Annals of the Association 
of American Geographers. 2012; 102: 1049-1057.

17. Hastie TJ, Tibshirani RJ. Generalized Additive Models. CRC Press. 1990.

18. Wood SN. Generalized Additive Models: An Introduction with R. Chapman 
and Hall/CRC. 2006.

http://www.ncbi.nlm.nih.gov/pubmed/20050933
http://www.ncbi.nlm.nih.gov/pubmed/20050933
http://cancercenters.cancer.gov/documents/ccsg_guidelines.pdf
http://cancercenters.cancer.gov/documents/ccsg_guidelines.pdf
http://cancercenters.cancer.gov/documents/ccsg_guidelines.pdf
http://www.ncbi.nlm.nih.gov/pubmed/19576837
http://www.ncbi.nlm.nih.gov/pubmed/19576837
http://www.ncbi.nlm.nih.gov/pubmed/19576837
http://www.ncbi.nlm.nih.gov/pubmed/22560115
http://www.ncbi.nlm.nih.gov/pubmed/22560115
http://www.ncbi.nlm.nih.gov/pubmed/18402693
http://www.ncbi.nlm.nih.gov/pubmed/18402693
http://www.ncbi.nlm.nih.gov/pubmed/18402693
http://www.ncbi.nlm.nih.gov/pubmed/18402693
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1069938/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1069938/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1089203/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1089203/
http://www.ncbi.nlm.nih.gov/pubmed/19542267
http://www.ncbi.nlm.nih.gov/pubmed/19542267
http://www.ncbi.nlm.nih.gov/pubmed/19542267
http://www.ncbi.nlm.nih.gov/pubmed/19542267
http://www.tandfonline.com/doi/abs/10.1080/03610929708831995
http://www.tandfonline.com/doi/abs/10.1080/03610929708831995
http://www.ncbi.nlm.nih.gov/pubmed/23104049
http://www.ncbi.nlm.nih.gov/pubmed/23104049
http://www.ncbi.nlm.nih.gov/pubmed/23104049
http://www.ncbi.nlm.nih.gov/pubmed/25983542
http://www.ncbi.nlm.nih.gov/pubmed/25983542
http://www.ncbi.nlm.nih.gov/pubmed/16764727
http://www.ncbi.nlm.nih.gov/pubmed/16764727
http://www.ncbi.nlm.nih.gov/pubmed/16764727
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538515/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538515/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2538515/
http://www.ncbi.nlm.nih.gov/pubmed/21718483
http://www.ncbi.nlm.nih.gov/pubmed/21718483
http://www.ncbi.nlm.nih.gov/pubmed/21718483
http://www.tandfonline.com/doi/abs/10.1080/00045608.2012.671131?journalCode=raag20
http://www.tandfonline.com/doi/abs/10.1080/00045608.2012.671131?journalCode=raag20
http://www.tandfonline.com/doi/abs/10.1080/00045608.2012.671131?journalCode=raag20
https://www.crcpress.com/product/isbn/9780412343902
https://www.crcpress.com/product/isbn/9781584884743
https://www.crcpress.com/product/isbn/9781584884743


Austin Biom and Biostat 2(3): id1021 (2015)  - Page - 06

Wheeler DC Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

19. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood 
estimation of semiparametric generalized linear models. Journal of the Royal 
Statistical Society (B). 2011; 73: 3-36.

20. Waller L, Gotway C. Applied Spatial Statistics for Public Health Data. 
Hoboken, New Jersey: John Wiley & Sons. 2004.

Citation: Wheeler DC and Wang A. Catchment Area Analysis Using Generalized Additive Models. Austin Biom 
and Biostat. 2015;2(3): 1021.

Austin Biom and Biostat - Volume 2 Issue 3 - 2015
Submit your Manuscript | www.austinpublishinggroup.com 
Wheeler et al. © All rights are reserved

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00749.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00749.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00749.x/abstract
http://onlinelibrary.wiley.com/doi/10.1002/0471662682.fmatter/pdf
http://onlinelibrary.wiley.com/doi/10.1002/0471662682.fmatter/pdf

	Title
	Abstract
	Abbreviations
	Introduction
	Materials and Methods
	Study population
	Statistical modeling

	Results and Discussion
	Conclusion
	Acknowledgement
	References
	Figure 1
	Table 1
	Table 2
	Table 3

