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Abstract

The main purpose of this research is to evaluate use of Last Observation 
Carried Forward (LOCF) as an imputation method when persistent binary 
outcomes are missing in a Randomized Controlled Trial. A simulation study was 
performed to evaluate the effect of equal event rates and equal/unequal dropout 
rates on Type I error. Properties of estimated event rates, treatment effect, and 
bias were also assessed. LOCF was also compared to two versions of complete 
case analysis - Complete1 (excluding all observations with missing data), and 
Complete2 (only carrying forward observations if the event is observed to occur). 
The results showed that 1) If the dropout rates were equal, the three analysis 
methods all had appropriate Type I error; 2) If the dropout rates were unequal, 
the Type I error was much greater than 0.05 in both LOCF and Complete2 
analysis; 3) Regardless of dropout rates, the estimated mean event rate was 
underestimated in the LOCF analysis and overestimated in the Complete2 
analysis, while Complete1 analysis had the closest estimated mean event rate 
to the true rate; 4) Compared to the study with no event at the first time point, the 
estimated mean event rate was underestimated less in the LOCF analysis and 
overestimated more in the Complete2 analysis when an event could occur at the 
first time point. LOCF analysis was applied to a mammogram dataset, where the 
LOCF method underestimated the final event rate.

Keywords: Last observation carry forward; Persistent binary data; Missing 
data; Estimated mean event rate; Type I error; Bias
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Introduction
In a Randomized Clinical Trial (RCT), patients often drop out 

before a study is completed because of side effects, recovery, lack 
of improvement, unpleasant health problems, and other unknown 
factors, which results in missing data [1]. Intent to treat (ITT) analysis 
– used in analyzing clinical trial data – is based on the initial treatment 
plan, and intends to analyze data from all the observations, even if the 
patients drop out of the study. When there are missing data, following 
ITT requires some kind of imputation be used. Although there are 
many missing data imputation methods, such as Last Observation 
Carried Forward (LOCF) [2], replacement with mean [3], regression 
imputation [4], multiple imputation [5], and maximum likelihood 
[6], no single method is appropriate for all problems.

The focus in this paper will be on the LOCF imputation method 
applied to persistent binary cases. A persistent phenomenon is 
defined as an event that once it occurs at a time point, it will occur 
at all the following time points. One example of persistent binary 
outcomes occurred in the Women Improving Screening through 
Education and Risk Assessment (WISER) study [7]. To assess a 
simple tailored health promotion intervention, the participants were 
asked whether they had a mammogram since the start of the study. 
Once participants had a mammogram the event persists.

Special Article - Biostatistics Theory and Methods

The Application of Last Observation Carried Forward in 
the Persistent Binary Case
Jun He and Donna McClish*
Department of Biostatistics, Virginia Commonwealth 
University, USA

*Corresponding author: McClish, Department of 
Biostatistics, Virginia Commonwealth University, Virginia

Received: June 01, 2015; Accepted: June 11, 2015; 
Published: June 19, 2015

Almost all clinical trials face the problem of missing data. 
For example, in the WISER study, a nearly 40% dropout rate was 
observed. Then the question becomes how to analyze a dataset with 
missing data. LOCF assumes that after the point of dropout the 
last observed outcome is used in place of missing observations. For 
continuous outcomes, this method is not recommended because it 
introduces bias, and alters the mean and variance [8,9]. For binary 
data, the LOCF imputation method not only has poor frequency 
properties of estimators when missing values are due to dropout, 
but also causes inflated Type I error rates [10]. This method may also 
have poor performance in analyzing binary outcomes if the event is a 
persistent phenomenon.

The purpose of this paper is to evaluate the LOCF imputation 
method in situations of persistent binary outcomes. A simulation 
study is performed to examine the effect of dropout rates and type 
of dropout (random or associated with treatment arm) on Type I 
error for the LOCF method of analysis. At the same time, the results 
from LOCF are compared to two versions of complete case analysis: 
Complete1 (excluding all observations with missing data), and 
Complete2 (excluding the missing data when the event hasn’t been 
observed to occur, but carrying forward the observations if the event 
is observed to occur).

Section 2 describes the simulation. Section 3 presents results of 
the simulation, allowing a comparison of the three analysis methods. 
In section 4, these methods are applied to a real life example using 
the WISER study. Finally, we summarize the study, discuss the 
limitations, and mention future work.
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Simulation and Methods
Assumptions and parameters in the simulation

Simulations are performed by assuming an RCT with two 
treatment arms (Control and Treatment), equal sample sizes and three 
time points (T1, T2, and T3). Two study scenarios are considered. In 
one, it was assumed that the study event could not have occurred at 
T1. This would be typical for a clinical trial where T1 is baseline (prior 
to treatment) and having the event would be exclusion to enrolling in 
the study. In the second scenario, the first measurement (T1) could 
be assessed after treatment and the event may or may not occur at 
that time. In both studies, it was assumed no missing data at T1, and 
an equal likelihood that the missing data would first occur at T2 or 
T3. The persisted event is assumed, meaning that the subject will 
continue to have the event at future time points once a subject has the 
event. Monotone missing is also assumed, which can be explained as 
once a subject has missing data at a time point all future time points 
will also be missing.

For the event rates, we assume no treatment effect (equal event 
rate), allowing the Type I error rate to be assessed. Both equal and 
unequal dropout rates are considered (Table 1). For the case of equal 
dropout rate, 9 scenarios are considered, represented by a range 
of low, moderate and high event rates (0.2, 0.5, and 0.8), and low, 
moderate and high dropout rates (10%, 25%, and 40%). In the case of 
unequal dropout rates, 18 scenarios are investigated. Since the effect 
of unequal dropout could be influenced by how different the dropout 
rates are, two scenarios corresponding to each average dropout 
rate are considered. For example, when the average dropout rate is 
10%, dropout rates of 12.5% vs. 7.5% and 15% vs. 5% are used in the 
control group and the treatment group respectively. For each set of 
parameters, 2000 replications are used for estimation and testing.

Simulation of full dataset and missing dataset
SAS statistical software (version 9.4) was used to simulate data 

and perform statistical analyses. The simulation primarily used SAS 
Interactive Matrix Language.

The full dataset was simulated as follows. We assumed a sample 
size of 100 per group (which is large enough to detect a 20% difference 
in groups with power 80%). Based on the assumed true event rate, 
events at T3 were created according to a Bernoulli distribution. If at 
T3 no event was observed, the event could not have occurred at an 
earlier time point, so a no event marker was created for previous time 
points (T2 and T1). However, if at T3 an event was observed, the time 
of its first occurrence had to be determined. If the event could occur at 
T1, then its first occurrence must have been at T2 or T3; we assumed 

this was equally probable and used a Bernoulli random variable with 
probability 1/2 to assign first occurrence. Similarly, if the event could 
occur at T1, we assumed this was also equally probable and used a 
Bernoulli random variable with probability1/3 to determine the time 
of first occurrence.

Once the full dataset was generated in both groups, the possible 
missing outcome patterns were implemented. First, we determined 
which people would and would not have missing observations, using 
a Bernoulli random variable with parameter equal to the dropout 
rate. We also assumed that there was no dropout at T1, and that, for 
those who dropped out, the probability of dropping out at T2 and 
T3 would be equal. Therefore we would be able to know where the 
missing data started (which observation and which time point). Once 
the missing data was observed, we assumed monotone dropout. If 
dropout rate was random, equal dropout rate was assumed in Control 
and Treatment groups. If dropout rate was related to group, then 
unequal dropout rate was assumed.

According to different data imputation methods, LOCF dataset, 
Complete1 dataset, and Complete2 dataset were created. Again, the 
LOCF method replaces missing observations with the observation 
previous to the time point that the first missing observation appeared. 
The Complete1 method excludes all observations with missing data. 
For the Complete2 dataset, instead of excluding all the observations 
with missing data, if the event were observed at T2, but missing at 
T3, we assumed that the event also occurred and was observed at T3.

Methods and statistical analyses
The primary analysis focuses on testing for a treatment effect, 

which is the difference of event rates. The difference of estimated 
event rates between groups will be analyzed using the two sample 
proportion z-test.
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RT is the event rate of the treatment  group, and RC is the event rate of 
the control group, and R0 is the pooled event rate for the entire sample. 
NT is the number of subjects in the treatment group, and NC is the 
number of subjects in the control group.  In the full dataset and LOCF 
dataset, NT=NC. In the two Complete data sets, the sample sizes are 

No Treatment Effect Case Parameter Values (Group1, Group2) Scenario Total Scenario

With equal dropout rate Event Rate (equal) (0.2,0.2), (0.5, 0.5), (0.8, 0.8) 3 3x3=9
Dropout rate (equal) (10%, 10%), (25%, 25%), (40%, 40%) 3

With unequal dropout rate

Event Rate (equal) (0.2,0.2), (0.5, 0.5), (0.8, 0.8) 3

3x6=18
Dropout rate (unequal)

(12.5%, 7.5%), (15%, 5%)

6(30%, 20%), (40%, 10%)

(45%, 35%), (60%, 20%)

Table 1: Parameters in Simulation.

Note: “Group1” and “Group2” represent Control and Treatment groups. Since event rates are equal, results are the same regardless of which is considered Group1.
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not equal because observations are deleted depending on the missing 
value pattern.  Each replication will have a Z test statistic calculated.  
Since the null hypothesis is no treatment effect, the number of times 
that the absolute value of Z exceeds Z0.05 (=1.96) over all replications 
will be counted.  When the null hypothesis is true, the proportion will 
be the Type I error, which is expected to be around 5%.  

The bias in the estimated treatment effect can be expressed as 
T TOC CO(R R ( )R R)

∧ ∧ ∧ ∧

− − − , the difference between the estimated and the 
true treatment effect, where RC0 is the assumed true event rate in the 
control group, and RT0 is the assumed true event rate in the treatment 
group.  Since this simulation assumes equal event rates (RC0- RT0=0), 
bias in the estimation of treatment effect is equal to the estimated 
treatment difference TC )(R R

∧ ∧

− .

Results
Equal dropout rate

Three event rates (0.2, 0.5, and 0.8) and equal dropout rates (10%, 
25%, and 40%) were assumed. The results (Figure 1) showed that the 
mean event rate was underestimated when LOCF analysis was used 
but was overestimated using Complete2 analysis, while Complete1 
analysis had estimated mean event rate very close to the true event 
rate. Since the pattern for each event rate under different dropout 

rates was the same, only the highest event rate (0.8) was presented. 
When the dropout rate increased, the amount of underestimation 
of the mean event rate increased when the LOCF was used. The 
results also showed that the underestimation for LOCF was large 
while the overestimation for Complete2 analysis was relatively 
small. Furthermore, it was interesting to see that the estimated mean 
event rate was less underestimated in the LOCF analysis and more 
overestimated in the Complete2 analysis in the case where the event 
might occur at T1 as compared to the case when no events occur at T1. 
For example, when the event rates are 0.8, and the event rate cannot 
occur at T1, dropout rates of 10%, 25%, and 40% lead to estimated 
mean event rates of 0.74, 0.65 and 0.56 for LOCF, but 0.80, 0.81 and 
0.82 for Complete2 respectively. Yet when the event could occur at 
T1, the estimated mean event rates were 0.76, 0.70 and 0.64 for LOCF, 
but 0.81, 0.82 and 0.84 for Complete2.

Even though the mean event rate was underestimated when LOCF 
was used and overestimated when Complete2 was used in general, the 
difference in rates between two groups was near zero in both analyses. 
The results showed that the bias was close to 0 (Table 2). Table 3 
showed the proportion of times that the test of significant difference 
between the two event rates was rejected. Since no treatment effect 
was assumed, a rejection rate of 5% was expected. The result also 

No event occurred at Time 1     Event might occur at Time 1 

   

Figure 1: Estimated Mean Event Rate: Equal Event Rate (0.8) and Equal Dropout Rate.
Note: “Group1” and “Group2” represent Control and Treatment groups.  Since event rates are equal, results are the same regardless of which is considered 
Group1. Only the scenario of equal event rate of 0.8 was shown here due to same pattern for event rates 0.2 and 0.5.

Event Rate Dropout Rate

Bias

No event occurred at T1 Event might occur at T1

LOCF Complete1 Complete2 LOCF Complete1 Complete2

20%

10% 0.002 0.002 0.002 0.002 0.002 0.002

25% 0.001 0.003 0.002 0.002 0.003 0.003

40% 0.002 0.004 0.003 0.002 0.004 0.002

50%

10% 0.002 0.003 0.002 0.003 0.003 0.003

25% 0.002 0.002 0.003 0.003 0.002 0.003

40% 0.003 0.003 0.003 0.002 0.003 0.003

80%

10% 0.000 0.001 0.001 0.000 0.001 0.001

25% 0.001 0.001 0.001 0.000 0.001 0.000

40% 0.002 0.001 0.001 0.002 0.001 0.001

Table 2: Bias: Equal Dropout Rate.
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showed that all Type I error rate estimates in the equal drop-out cases 
were within +/- 2% of the nominal 5% level.

Unequal dropout rate
The mean event rates were estimated under the assumption of 

equal event rate (0.2, 0.5 or 0.8) and unequal dropout rate. Note that 
since event rates are equal, results are the same regardless of whether 
the dropout rate is higher in the Treatment or Control group, thus 
tables and figures simply refer to Group1 and Group 2. Similar to 
the results under the condition of equal dropout rate, mean event 
rates were underestimated using LOCF analysis and overestimated 
using Complete2 analysis; Complete1 analysis still had estimates of 
mean event rate close to the true rate (Figure 2). Figure 3 displayed 
the bias in estimated treatment difference for equal event rates of 
0.8 and unequal dropout rate. In LOCF and Complete2 analysis, for 
each equal event rate case the absolute bias increased as the difference 
between dropout rates increased under a fixed average dropout rate. 

For example, when no event can occur at T1, and the average dropout 
rate was 40%, the absolute bias with LOCF analysis increased from 
0.058 to 0.241 as the dropout difference increased from 10% to 40%, 
while with Complete2 analysis the absolute bias increased from 0.01 
to 0.038. It was interesting to see that under any fixed equal event 
rate and fixed difference of dropout rate the bias was stable in LOCF 
analysis (Figure 3a). For example, under the assumption of equal 
event rate of 0.8, if the dropout difference was 10%, regardless of 
average of dropout rates the absolute bias was 0.06. However, in 
Complete2 analysis instead of observing similar bias, we observed 
that under the same dropout difference the bias was slightly increased 
as the average dropout rate increased (Figure 3a). For instance, under 
the assumption of equal event rate of 0.8 and dropout difference of 
10%, the bias increased from 0.006 to 0.007 to 0.01 as the average 
dropout rate increased from 10% to 25% to 40%. Figure 3b showed 
the same pattern as Figure 3a.

Event Rate
Dropout Rate

Type I error

No event occurred at T1 Event might occur at T1

Ave. Gp1 Gp2 LOCF Complete1 Complete2 LOCF Complete1 Complete2

20%

10%

10 10 0.050 0.055 0.052 0.051 0.055 0.049

12.5 7.5 0.051 0.050 0.050 0.050 0.050 0.050

15 5 0.056 0.049 0.049 0.054 0.049 0.054

25%

25 25 0.046 0.046 0.048 0.049 0.046 0.050

30 20 0.058 0.049 0.053 0.052 0.049 0.060

40 10 0.128 0.047 0.064 0.085 0.047 0.104

40%

40 40 0.044 0.046 0.045 0.049 0.046 0.045

45 35 0.051 0.044 0.051 0.052 0.044 0.061

60 20 0.217 0.042 0.094 0.111 0.042 0.190

50%

10%

10 10 0.054 0.052 0.051 0.056 0.052 0.049

12.5 7.5 0.057 0.055 0.055 0.053 0.055 0.056

15 5 0.082 0.055 0.053 0.061 0.055 0.059

25%

25 25 0.053 0.052 0.050 0.057 0.052 0.054

30 20 0.087 0.051 0.054 0.066 0.051 0.054

40 10 0.361 0.047 0.066 0.187 0.047 0.114

40%

40 40 0.041 0.044 0.044 0.052 0.044 0.047

45 35 0.074 0.048 0.046 0.065 0.048 0.057

60 20 0.598 0.049 0.101 0.301 0.049 0.241

80%

10%

10 10 0.055 0.051 0.048 0.054 0.051 0.050

12.5 7.5 0.080 0.053 0.051 0.067 0.053 0.056

15 5 0.151 0.054 0.053 0.096 0.054 0.058

25%

25 25 0.047 0.054 0.050 0.055 0.054 0.053

30 20 0.145 0.050 0.050 0.098 0.050 0.055

40 10 0.761 0.048 0.059 0.468 0.048 0.086

40%

40 40 0.054 0.053 0.056 0.049 0.053 0.059

45 35 0.140 0.051 0.052 0.095 0.051 0.058

60 20 0.944 0.050 0.080 0.664 0.050 0.159

Table 3: Type I Error:  Equal and unequal dropout rates.

Note: “Ave.” represents average dropout rate.  “Gp1” and “Gp2” represent Group1 and Group2.  Since event rates are equal, results are the same regardless of which 
is considered the Control group.
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Table 3 has the estimated Type I error rates. If the event rate was 
low (0.2) and dropout rate was very low (average 10%), the dropout 
rate did not have much effect on Type I error in each analysis, which 
was close to 0.05. In contrast to results for equal dropout rates, 
however, the Type I error in LOCF analysis increased when the 
difference of the dropout rates increased. When the equal event rate 
was 0.2 and dropout difference was 40%, the Type I error was 0.217 
and it was 0.944, when equal event rate was 0.8 with 40% dropout 
difference. With an estimated Type I error rate as high as 0.944 (rather 
than the desired 0.05), LOCF analysis should not be used in cases of 
unequal dropout rates. Complete2 analysis also behaved poorly for 
higher event rate with bigger difference of dropout rate (Table 3). The 
Type I error of 0.101 was observed under equal event rate of 0.5 and 
dropout difference of 40%. This result was not as extreme as that of 
the LOCF analysis.

No event occurred at Time 1    Event might occur at Time 1 

   

  

    

Figure 2: Estimated Mean Event Rate: Equal Event Rate (0.8) and Unequal Dropout Rate.
Note: “Group1” and “Group2” represent Control and Treatment groups.  Since event rates are equal, results are the same regardless of which is considered 
Group1. Only the scenario of equal event rate of 0.8 was shown here due to same pattern for the event rates 0.2 and 0.5.

Application
In this section we illustrate the missing imputation methods using 

an example from a study of breast cancer screening - the WISER study 
[7]. The purpose of WISER was to assess whether a simple, tailored 
health promotion intervention would increase mammography 
screening rates. Subjects were randomly assigned to an Intervention 
group (449 participants) or a Control group (450 participants).Risk 
for breast cancer was assessed at baseline using the Gail Model [11]. 
The intervention group received, at baseline, recommendations 
tailored to their individual risk category, including information based 
on the Health Belief Model (HBM) such as barriers to mammography, 
the seriousness of breast cancer, and benefits of yearly mammograms. 
The control group only received general information about breast 
cancer prevention practices, but no individual recommendations, no 
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HBM report, and no risk report. Subjects were followed at 1 month, 
6 months and 18 months after randomization and intervention. 
They were asked at each follow-up time point if they had gotten a 
mammogram since enrolling in the study. The primary question 
was whether there was a difference of mammogram rates at the 18th 
month follow-up between intervention and control groups.

If subjects responded at all the follow-ups, analysis would 
be straightforward. Only a z-test was needed to be performed in 
analyzing the 18th months’ follow-up on mammogram. However, as 
is typical, there was missing data. The question became how to analyze 
data when the dataset was incomplete. Our simulation investigated 3 
methods, which we applied here.

No mammogram was assumed at baseline. Occasionally a subject 
who did not respond at an earlier follow-up time point responded to 
a later follow-up. This violates the assumption of monotone dropout. 
For purposes of this paper, though, the data were altered to force 
the assumptions to hold by ignoring later responses (considering 

 

Figure 3a: Bias: Equal event rate (0.8) and unequal dropout rate. No event 
occured at time 1.

Figure 3b: Bias: Equal Event Rate (0.8) and Unequal Dropout Rate. Event 
might occur at Time 1.
Note: This figure shows the bias in estimated treatment effect for the 3 
analyses methods.  Since no treatment effect was assumed (RC-RT= 0), the 
absolute bias was actually (RC-RT).

them to be missing). In addition to the self-reported mammography 
data, information was obtained from medical records and the health 
information system. It was assumed that if there was no report of a 
mammogram from self-report, medical records or the information 
system, and then no mammogram had been done. This was used to 
construct a gold standard or “full dataset”.

Participants in the WISER study were between 40 and 82 years old, 
with 56% under the age of 50. Half of the participants were Caucasian 
and 59% had at least some college education. The dropout rate in the 
control group increased from 21% at month 1 to 35% at month 6, and 
41% at month 18, while in the intervention group the dropout rate 
was 17%, 37% and 43% at month 1, 6 and 18, respectively. It appeared 
reasonable to expect results to be similar to those presented in our 
simulation with equal dropout.

For analysis of the mammogram data, the final event rates were 
different in the four datasets (Table 4). At 18 months, in the full 
dataset 74.89% and 73.05% of the sample had a mammogram in the 
control group and the intervention group respectively - a scenario of 
equal event rate. In the LOCF analysis, the estimated mammogram 
rates (58.22% and 56.79% in the control group and the intervention 
group respectively) appeared to be underestimated. In the Complete2 
analysis, much higher event rates (>84%) were observed in both 
groups. The sample sizes were decreased almost 40% in the Complete1 
and Complete2 analyses (Table 4).

The Z-test was performed for each analysis method to test if there 
was an intervention effect. None of the p-values of the test statistics 
were less than 0.05 (Table 5), so the null hypothesis could not be 
rejected, implying that we could not find evidence to show significant 
difference under α=0.05. Based on the simulation results when there 
was no treatment effect, while the actual event rates may be biased, 
the expected bias for treatment effect using LOCF, Complete1, and 
Complete2 should be close to 0, which could be ignored.

In the mammogram data analysis, LOCF underestimated the 
final event rate, and Complete2 overestimated final event rate for 
mammography (assuming that the “full dataset” represents the truth). 
In this dataset, Complete1 also overestimated the final event rate 
and the estimated event rates in Complete1 and Complete2 analyses 
were very close. However, the previous simulation study showed that 
Complete1 tended to have estimates similar to the full dataset. One 

Full LOCF Complete1 Complete2

Con. Int. Con. Int. Con. Int. Con. Int.
Analysis Sample 

Size 450 449 450 449 259 256 298 302

Event rate 74.9 73.0 58.2 56.8 86.1 81.6 87.9 84.4

Table 4: Analysis sample size and event rates (%).

Note: “Con.” represents Control group; “Int.” represents Intervention group.

Z-test Statistic for Mammogram

Group Full LOCF Complete1 Complete2

Event Rate Difference 0.0184 0.0143 0.0446 0.0348

Z-test Statistic 0.629 0.434 1.376 1.235

p-value (two-tailed) 0.529 0.664 0.169 0.217

Significance No No No No

Table 5: Analysis Results: Mammogram data.
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possible explanation for the conflict might be that the “full” dataset 
in the mammogram was probably not accurate. It was based on the 
assumption that if there were missing self-reported data, and no other 
sources (such as the chart or info systems) indicated that the subject 
had a mammogram, and then they did not have had a mammogram. 
Mammograms at an outside institution would not have been noted.

When the “full” dataset was used as a reference for the 
mammography data, it was reasonable to think that this was an 
application of the simulation study under the scenario of equal 
dropout rate and equal event rate. Even though the z-test in the 
LOCF analysis showed that there was no significant effect between 
the control group and the intervention group in this mammogram 
data analysis, it was not a good imputation method to analyze missing 
data because it also underestimated the individual event rates.

Discussion
This paper evaluated the application of the LOCF method with 

persistent binary data, assessing Type I error, estimated event rate, 
treatment effect, and bias. The simulation study showed that regardless 
of whether the dropout rate was equal or unequal, the mean event 
rate was underestimated using LOCF analysis, slightly overestimated 
using Complete2 analysis, and unbiased using Complete1 analysis. It 
was useful to try to understand why in LOCF analysis fewer events 
were observed at T3 than in the full dataset. Whether it was assumed 
that events could or could not occur at T1, if missing data occurred 
at T2, the outcome of no-event would be carried forward to T3. 
Therefore, we would observe lower event rates at T3 in LOCF analysis. 
Thus the phenomenon of underestimated mean event rate appeared 
in LOCF analysis, regardless of dropout rate. In Complete2 analysis, 
the missing data was excluded when the event hadn’t been observed 
to occur, but if the event was observed to occur, the data was kept and 
the observation was carried forward. Since it only excluded the entire 
missing observations with no event occurred in the last observation, 
Complete2 analysis had a higher percentage of events observed at the 
end of the study than the full dataset, which caused the mean event 
rate at T3 to be slightly overestimated. It was interesting to notice 
that compared to the situation when no events could occur at T1, the 
estimated mean event rate was underestimated less in LOCF analysis 
and overestimated more in Complete2 analysis when the an event 
could occur at T1.

The results also showed that neither LOCF analysis nor 
Complete2 analysis was a good choice for missing data imputation 
in the longitudinal binary data analysis due to poorly estimated 
event rates and the bias involved. If finding the treatment effect was 
the only interest, LOCF analysis could be used in the case of equal 
event rate and equal dropout rate. This was the only case that LOCF 
analysis showed proper Type I error around 0.05.But in practice we 
will not know whether event rates are equal. However, if we were 
interested in estimated mean event rates, Type I error, LOCF analysis 
and Complete2 analysis were both bad choices. Complete1 analysis 

seemed to behave well, but it was not practical. At the beginning of 
the study, we assumed that once the event happened, it persisted. 
Complete1 analysis excluded all the random missing observations, 
even though we observed the event in a previous time point. This 
action would likely not be considered appropriate by most users, 
although it gave the least biased results. Naturally, when we choose 
the method to analyze the data without formal imputation, we tend 
to use Complete2, which carried the event from the previous time 
point to the following time points if the observation was missed 
at this point. This method sounded logical, but unfortunately, it 
produced a somewhat biased result. Given that the analysis sample 
size of Complete2 is larger than Complete1, if mean squared error is 
important, though, the tradeoff between bias and variance may make 
Complete2 preferred after all.

Currently, in this simulation study, we only focused on random 
dropout and dropout related to treatment arm. If missing data was 
related to outcomes or event occurrence, the conclusion might be 
different. In the future, we might consider increasing the number of 
time points, or consider the time point that the first missing started 
to occur.
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