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Abstract

Identifying Quantitative Trait Loci (QTL) by association mapping is critical 
for understanding the genetic architecture of complex traits or diseases. Many 
statistical methods have been developed to locate genes and estimate the 
effects of these genes that are responsible for quantitative traits. Penalized 
maximum likelihood method is one of the powerful statistical tools for QTL 
mapping, especially in dealing with the problem of p >n, where p is the number 
of genetic effects and n is the sample size. Most methods derived from it are 
limited to analyzing single trait from samples with independent individuals. 
Genetic inheritable complex diseases usually affect family members and are 
expressed by multiple correlated traits. The purpose of this study is to develop a 
statistical method (penalized likelihood regression approach) to target QTL from 
samples in a general setting, that is, arbitrary related individuals, for both single 
and multiple traits. Simulation studies show that the proposed method has great 
performance in detecting QTL in both single- and two-trait scenarios with related 
and unrelated individuals. 

Keywords: Quantitative trait loci; Penalized maximum likelihood; Related 
individuals; Genome-wide association; False discovery rate; Multiple-trait 
association mapping

Introduction
Identifying Quantitative Trait Loci (QTL) is critical for 

understanding the genetic architecture of complex diseases or 
inheritable traits. Thus, QTL mapping aims to locate genomic 
variants and estimate the effects of these variants that are responsible 
for quantitative traits. One of initial methods for QTL mapping is 
Single Marker Analysis (SMA) based on a simple regression model 
[1,2]. The basic concept of this method is to consider each marker 
individually and check if there is an association between the trait and 
a marker. SMA provides the valuable framework for QTL mapping 
since the model is simple and easy to be extended to the multiple-
marker analysis. However, this method tends to underestimate QTL 
effects and is not powerful unless sample size is relatively large [3]. 
Moreover, this method may not be able to detect the accurate position 
of QTL, as it is unlikely that QTL is right at the marker position if 
the density of markers does not cover all variants in the genome [4]. 
Interval Mapping (IM) method, an extension of SMA, was introduced 
by Thoday [5] and mathematically developed by Lander and Botstein 
[3]. IM can estimate the location and effect of QTL between two 
flanking markers if only one QTL on a tested region is assumed. The 
estimated location and effect of QTL are likely biased since the test 
statistics may be affected by other putative QTL out of the tested 
region. For multiple QTL methods, an extended and improved 
version of IM, called Composite Interval Mapping (CIM) [6-9] that 
accounted markers outside of the tested interval, has been widely 
applied in practice. The main idea of CIM is to combine IM with 
multiple regression analysis to detect multiple QTL. Some markers 
outside of the tested region are selected as genetic background to 
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increase the resolution of IM. However, model-selection is somewhat 
subjective, depending on what variables are included or excluded [10-
13]. Moreover, for SNP datasets, the number of SNPs (p) is usually 
larger than the number of individuals (n), which makes the QTL 
mapping more challenging.

Bayesian shrinkage methods have become important 
computational tools to overcome the problems in CIM. Xu [14] 
proposed a method called Bayesian analysis implemented via the 
Markov Chain Monte Carlo (MCMC). In this model, individuals were 
assumed independent. Each marker was treated as a putative QTL and 
included in the model as one variable. The variance of QTL effects was 
then assumed to be different across QTL as a prior parameter. To 
perform satisfactorily, a sample size of 600 independent individuals 
is suggested in the method of Bayesian analysis implemented via 
the MCMC [15]. In addition, the MCMC algorithm requires a 
large number of iteration to converge to the stationary distribution. 
Both large numbers of sample size and iteration require intensive 
computational time, which becomes a major concern for the method. 
To reduce the computational burden, Zhang and Xu [16] developed 
an extended method of the Bayesian analysis implemented via 
the MCMC, called the penalized maximum likelihood method. It 
is similar in spirit to the method proposed by Xu [14] in that both 
methods shrink the null marker effects to zero, where the null marker 
effects are defined as the effects of the markers that are truly not QTL. 
The key of this method is to impose a prior normal distribution on the 
effect of each marker as a penalty, allowing the penalty to vary across 
each marker.
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Both Bayesian shrinkage methods consider all markers 
simultaneously and include as many QTL as the model can handle. 
However, these methods assume independence among individuals 
and can only deal with one trait at a time. In addition, these methods 
ignore the issue of multiple tests, which result in an increased 
rate of overall type I error (i.e., false positive). Studies in humans, 
animals, or plants may involve related individuals such as trio 
families and inbred pedigrees. Furthermore, complex traits usually 
have multiple phenotypic measurements and these traits may be 
correlated. Statistical methods for QTL mapping that considering 
the relatedness among individuals as well as multiple traits are still 
under development. In this study, we propose extended penalized 
maximum likelihood methods for single- and multiple-trait analysis 
on arbitrary related individuals and retain the feature of handling 
the p >n problem. Multiplicity issue is also considered by selecting a 
threshold of LOD score that controls FDR at 0.05.

Methods
Single trait analysis

Let Zi denote the quantitative trait of individual i in an arbitrary 
pedigree and express as a linear function of the genetic effects. 
Assuming no interaction among effects, the model is

0
1 1

, 1, 2,...,
p p

i ij j ij j i
j j

z b x b w d e i n
= =

= + + + =∑ ∑  
               (1)

where b0 is the overall mean; p is the total number of markers; xij and 
wij are dummy variables indicating the genotype of the jth marker for 
individual i and defined as

2 and 1ij ijx w= = −
for genotype A1A1, xij=0 and wij=1 for genotype A1A2, and

2 and 1ij ijx w= − = −

for genotype A2A2 such that they have a zero expectation and a unity 
variance [14]; bj and dj are additive and dominant effects associated 
with marker j, respectively. We assume bj and dj are independent; and 
ei~N(0,σ2) are the random environmental effect. 

In the matrix form, when all characteristics of n individuals are 
included, formula (1) expands to

Z=1b0+X*B+W*D+E*,         (2)

where Z is an n×1 vector of the quantitative trait; 1 is an n×1 vector of 
1s; X* and W* are n×p matrices of dummy variables; and B and D are 
p×1 vectors of additive and dominant effects, respectively.

We propose to take the relationship of individuals in a pedigree 
into account in the penalized maximum likelihood method by 
considering the relatedness coefficient ω, which is defined as two 
times the kinship coefficient. The kinship coefficients of any arbitrary 
pedigree can be calculated based on the relationships between 
individuals. For instance, the relatedness coefficient for parent-
offspring relationship is 0.5, meaning that theoretically 50% of the 
offspring’s genome comes from that parent. Thus, in formula (1), we 
assume that Cov(eu,ev)=σ2ωuv where ωuv is the relatedness coefficient 
for individual u and v. The distribution of E* for unrelated individuals 
is assumed to follow a multivariate normal distribution with mean 
vector 0 and covariance matrix σ2In, where In is the n×n identity matrix. 

When we take the relatedness among individuals into account, we 
assume E*~N(0, σ2Ω), where [Ω]uv=ωuv. Given the covariance matrix, 
it is possible to find a transformation matrix A [17] such that ATA=Ω-1 

and the model then becomes Y=AZ=A1b0+AX*B+AW*D+AE*=Cb0+
XB+WD+E. Note that E~N(0,σ2In).

Suppose that θ = (b0,b1,…,bp,d1,…,dp,σ
2) is the vector of parameters 

of interest. Under the assumption of multivariate normality for the 
quantitative trait, the likelihood function of the pedigree is given by

( ) ( ) ( )2 2

1

; , ; ,
n

n i i
i

L Y I Yθ φ β σ φ β σ
=

= =∏
where ϕ is the normal density, β = Cb0+XB+WD, and

0
1 1

p p

i i ij j ij j
j j

c b x b w dβ
= =

= + +∑ ∑
    

the main idea of penalty in the penalized maximum likelihood 
method is to have prior densities of the parameters, that is, hyper 
parameters, in the Bayesian framework. Since b0 and σ2 are always in 
the model, their inclusion should not be penalized [16].

In this study, prior densities of parameters are defined similarly 
as Xu [14]. Assume that additive and dominant effects are normally 
distributed, then bj~N(μbj,σ

2
bj) and dj~N(μdj,σ

2
dj) for j = 1,…, p. The 

hyper parameters μbj, μdj, σ
2

bj and σ2
dj in the prior distributions are very 

important in the oversaturated model, from the experience of Zhang 
and Xu [16] these parameters should be estimated from the data by 
assigning prior distributions to μbj and μdj such that μbj~N(0, σ2

bj /η) 
and μdj~N(0, σ2

dj /η) for j = 1,…, p, where η is a positive prior value 
for accessing μbj and μdj. It is useful in the shrinking process because it 
controls the convergence rate.

Now suppose that ξ=(μb1,…,μbp,μd1,…,μdp,σ
2

b1,…,σ2
bp,σ

2
d1,…,σ2

dp) is 
the vector of the hyper parameters of interest in the prior distribution. 
The prior density is

and the penalized likelihood function is Ψ(θ,ξ)=L(θ)P(θ,ξ). The 
parameters in the penalized likelihood function are estimated by 
taking the derivative of logΨ(θ,ξ) with respect to θ and ξ and then set 
the derivatives equal to zero. The solutions (PMLE) are performed by 
an iterative algorithm in the following steps.

Step 1. Initialization: set η>0 and initialize θ and ξ values.

Step 2. Updating b0: 1
2

0
1 1 1 1

p pn n

i i i ij j ij j
i i j j

b c c y x b w d
−

= = = =

   = − −   
     
∑ ∑ ∑ ∑

Step 3. Updating bj: 

Step 4. Updating dj:

Step 5. Updating σ2:

1
2 2

2
02 2

1 1 1 1
j

j j

p pn n

j i ij i i ik k ij j b
i i k jb b
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Step 6. Updating μbj: 

Step 7. Updating μdj: 

Step 8. Updating σ2
bj: 

Step 9. Updating σ2
dj: 

Step 10. Repeat 2-9 until a certain criterion of convergence is 
satisfied. The terms

for s=bj or s=dj, in Steps 3 and 4 are important in the iterative 
algorithm. σ2

s’s are defined in Steps 8 and 9 as the average of squared 
deviance and a squared mean effect multiplied by a constant. If σ2

s 
is large (large effect), the estimated additive effect (bj) or dominant 
effect (dj) is expected to be unaffected (i.e. no shrinkage). However, 
if σ2

s is small (small effect or no effect), the estimates will be shrunk 
towards zero.

Theoretically non-QTL effects are shrunk to zero whereas QTL 
with effects subject to no shrinkage. This makes the signals of QTL 
very clear. The estimated additive and dominant effects should be 
visualized by plotting the estimated effects over all markers along 
the genome. To ensure that the estimated effects are significant, a 
likelihood ratio test can be performed. Due to over parameterization, 
the usual likelihood ratio test is not appropriate. Therefore, we follow 
a two-stage process proposed by Zhang and Xu [16]. In the first stage, 
markers that have estimated effects

( 6 6ˆ ˆˆ ˆ/ 10  or / 10j jb dσ σ− −> > )

are selected for the second stage of analysis. This is good because 
biologically we are not interested in the effects that are relatively 
small. In the second stage of analysis, since the dimension of markers 
is greatly reduced, a likelihood ratio test can be performed on the 
markers that have passed the first round of selection. To test the null 
hypothesis of no additive or dominant effects, we apply the LOD 
score test [3],

( )
( )10

ˆ
log

ˆ 2 ln10
j

j
j

L LR
LOD

L

θ

θ−

 
 = =
 
 

   (3)

where j is the index of the marker after the first round of selection,
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is the likelihood under the null hypothesis, and L(θ) is the likelihood 
without restriction on the parameters. The null hypothesis is rejected 
if LODj exceeds a threshold that controls the FDR at 0.05.
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Multiple traits analysis
For studies that involve multiple traits (e.g. in clinics), single-

trait model will simply ignore the correlation among these traits 
and detect QTL for each trait separately. However, complex traits, 
especially for complex diseases, these traits may be correlated. 
To analyze correlated traits in one model, we expect to gain more 
statistical power in detecting QTL. In this study, we also propose 
an algorithm that incorporates the correlation between traits in the 
model. This algorithm can be easily extended to a model with more 
than two traits. The definitions of notations in the two-trait model 
are similar to those in the single-trait model, except now they are 2×1 
vectors. We distinguish notations for the two-trait model from the 
single-trait model by having underscores on matrices for the two-trait 
model. That is, let Zi=[Zi

(1),Zi
(2)]T be a 2×1 vector of quantitative traits 

(1) and (2) of individual i in a pedigree. The model is

0
1 1

1
p p

i ij ij ij j
j j

z b x b w d e
= =

= + + +∑ ∑   (4)

where 1 is a 2×1 vector of 1s; xij and wij are 2×1 vectors of dummy 
variables; bj and dj are additive and dominant effects associated 
with maker j, respectively; and ei is a 2×1 vector of the random 
environmental effect. Note that ei ~N(0,σ2R), R is a 2×2 correlation 
matrix with correlation coefficient r between two quantitative traits 
on the off- diagonal. In the matrix form, the statistical model can be 
expressed as Z=1b0+X*B+W*D+E, where W~N(0,(Ω⊗σ2R)) and ⊗ is 
the Kronecker product. Similar to the single-trait model, we use A as 
a transformation matrix such that Y=(A⊗I2) Z=Cb0+XB+WD+E and 
E~N(0,(In⊗σ2R)). 

The likelihood function is

( ) ( )( ) ( )2 2

1

; , ; ,
n

in i
i

L Y I R Y Rθ φ β σ φ β σ
=

= ⊗ =∏

where now θ=(b0,b1,…,bp,d1,…,dp,r,σ2), β=Cb0+XB+WD and 
βi=Cib0+XiB+WiD. Note that b0 r, and σ2 are not penalized. The prior 
density is the same as that in the single-trait analysis. The penalized 
log likelihood function is Ψ(θ,ξ)=L(θ)P(θ,ξ). The derivation of the 
maximum likelihood estimates for two-trait model is similar to the 
single-trait model with an additional step of updating r, the coefficient 
of correlation between two traits.

Step 1. Initialization: set η>0 and initialize θ and ξ values. 

Step 2. Updating b0:

Step 3. Updating bj:

Step 4. Updating dj:

Step 5. Updating r:

( )
1

1 1
0
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n n
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E(1)=Y(1)-C(1)b0-X
(1)B-W(1)D

E(2)=Y(2)-C(2)b0-X
(2)B-W(2)D

r=corr(E(1),E(2)).

Step 6. Updating σ2: 

Hyperparameters for two-trait model in Steps 7 to 10 are the same as 
Steps 6 to 9 in single-trait model.

Step 11. Repeat steps 2-10 until a certain criterion of convergence 
is satisfied.

We first choose candidate QTL with either

2 6 2 6ˆ ˆˆ ˆˆ ˆ/ 10  or / 10j jb R d Rσ σ− −> >

in the first stage of analysis. In the second stage, we perform the 
likelihood ratio test with markers that have passed the first stage of 
selection. The LOD score test in formula (3) is then applied to check 
if there is significant additive or dominant effect at a given marker.

Controlling false discovery rate
Multiplicity issue is an important problem in testing many 

hypotheses simultaneously. In this study, we first took the commonly 
used threshold, LOD = 3, proposed by Morton [18], and found that 
4 out of 24 scenarios that we explored in the single trait analysis and 
13 out of 36 scenarios that we explored in the two-trait analysis had 
the Monte Carlo estimated FDRs greater than 0.05. We then tried the 
threshold of LOD = 3.3 as suggested by Lander and Kruglyak [19] 
and found that 3 out of 24 scenarios in the single trait analysis and 
2 out 36 scenarios in the two-trait analysis with the estimated FDRs 
exceeded 0.05. Finally, when we used LOD = 3.5 as the threshold, the 
estimated FDRs in all scenarios in both single- and two-trait analysis 
are controlled at 0.05.

Simulation studies
We conducted computer simulations using Matlab software [20] 

to investigate the performance of the proposed methods. For single-
trait model, 201 markers were simulated by SimPed program [21] with 
two levels of sample sizes, n = {150,300}. The Minor Allele Frequency 
(MAF) across all markers is assumed to be uniformly distributed, 
MAF ~ Unif (0.1, 0.5). Markers were evenly spaced with 1cM between 
two adjacent markers and each marker was assumed to be associated 
with two parameters, an additive and a dominant effect. The number 
of parameters in the model (402 in total) was larger than the number 
of individuals (n). We explored and compared the performance of 
our proposed method at three levels of heritability (h2 = 0.4, 0.6, and 
0.8) and four pedigree structures (I (a), II (b), III (a+b+c), and IV 
(d)), where pedigree structure IV could be considered as a family with 
inbred individuals that is commonly seen in animals or plants. These 
pedigree structures are illustrated in Figure 1.

We assigned four QTL at various locations with their sizes of 
additive and dominant effects listed in Table 1. The genetic variance 
was calculated by summing all the variations across QTL,

4
2 2 2

1
33g i i

i
b dσ

=

= + =∑ ,

( ) ( )1
0 0
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2

n
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i i i ii i i i
i
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n
σ

−

=

− − − − − −
=
∑

where b and d are the additive and dominant effect, respectively. The 
variance of the random environmental effect σ2 is then determined by 
different levels of heritability.

There are 24 (= 3x2x4) scenarios in total according to the 
combination of factors we explore in this study (3 levels of 
heritability, 2 levels of sample size, and 4 pedigree structures). These 
factors are summarized in Table 2. We are specifically interested in 
two questions: (1) how good are the estimates and statistical power? 
(2) Is the FDR under control? In order to answer these questions, we 
carry out simulation studies by using the Monte Carlo method. In this 
study, each scenario is replicated 500 times to evaluate the accuracy 
of the estimates and the statistical power. Our proposed methods are 
model-selection-free. Thus we expect it takes less number of iterations 
to converge compared with other model-selection based MCMC 
approaches. Moreover, all non-QTL effects are shrunk to zero, so we 
expect to have clear signals of QTL effects if QTL exist. 

Initially, we set bj=dj=𝜇bj=σdj=0, σ2
bj=σ

2
dj=1, b0=mean(Y), and σ2 

=Var(Y) for j = 1, 2,…, p. The convergence criterion is the norm
( ) ( )1 410t tθ θ − −− <

at the tth iteration. The prior value η is set to be 5. Since η controls the 
convergence rate of the shrinking process, it is more sensitive with 
a smaller value at the cost of a slower convergence. For other values 
such as 10 and 20, we have verified that the results are consistent 
(results not shown). The test statistic LODj is calculated after this two-
stage process and the threshold used in the study is LODj ≥ 3.5, which 
is determined by controlling FDR at 0.05.

For two-trait analysis, we evaluate the performance of the method 

 
(a)   (b)       (c)             (d) 

Figure 1: Pedigree structures for simulation.

QTL Position (cM) Additive (b) Dominant (d)

1 40 4 2

2 80 2 1

3 120 2 0

4 160 0 2

Table 1: Locations and effects of the four QTL used in the simulation.

Factor Value

Heritability 0.4, 0.6, 0.8

Number of individuals 150, 300

Pedigree structure I, II, III, IV

Table 2: Factors and values used in the simulation studies of single-trait analysis.

Parameter Value

Heritability 0.4, 0.6, 0.8

Correlation coefficient 0.4, 0.6, 0.8

Pedigree structure I, II, III, IV

Table 3: Factors and values used in the simulation studies of two-trait analysis.
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by using 150 individuals only with 500 replicates since increasing 
sample size should increase the power theoretically. The effects of 
different levels of heritability and structures of pedigree on the power 
of tests are also considered. Additionally, we also explore whether 
the proposed method is robust to any correlation between traits by 
considering three levels of correlation coefficient (r = 0.4, 0.6, and 
0.8). These factors are summarized in Table 3. The QTL locations and 
sizes of their additive and dominant effects used for simulation are 
listed in Table 1. The prior value η and the convergence criterion are 
the same as defined in the single-trait analysis. Using formula (3), the 
test statistic LODj is calculated after the two-stage process. LODj≥ 3.5 
is the criterion of rejection, which is determined by controlling FDR 
at 0.05.

Simulation results
Single-trait analysis: The estimates of additive and dominant 

effects at each marker for all 24 scenarios are plotted in Figures 2 
and 3, respectively. These estimates at each marker are obtained by 
averaging the estimated effects from 500 replicates. By the Bayesian 
shrinkage methods, the non-QTL effects shrink towards zero 
compared with visible peaks at QTL positions. Our data show that 
the estimates of non-QTL effects are very close to zero, which served 
as the background, providing extremely clear signals of QTL effects 
at true QTL locations.

The power is defined as the proportion of alternative hypotheses 
that are corrected rejected [22]. In this study, it is calculated by the 

Figure 2: The estimated additive effects against marker positions (single-
trait).

Figure 3: The estimated dominant effects against marker positions (single-
trait).

Figure 4: Power estimates under different scenarios from single-trait analysis.

number of QTL detected divided by the number of QTL assigned 
in the simulation. The estimates of average power of QTL detection 
across replicates for each of these 24 scenarios are compared and 
presented in Figure 4. As we expected, increasing sample size 
improves the power. Similarly, a higher heritability also results in a 
higher power in detecting QTL. For a relatively small sample size (n 
= 150) with a relatively low heritability (h2 = 0.4), the average power 
is moderate. It ranges from 48.1% to 52.8% for these four pedigree 
structures we explored. This power increases to a range from 76.2% to 
82.8% with h2 = 0.6. It is significantly improved, reaching from 91.3% 
to 94.8% when the heritability is 0.8. Intuitively, this makes sense 
since a larger portion of phenotypic variation is explained by genetic 
variation with a higher heritability and therefore the larger effect is 
easier to be detected. For a large sample size (n = 300), the average 
power is at least 84% for all scenarios. In addition, the statistical 
power is not sensitive to pedigree structure, which demonstrates that 
our proposed method is robust and can be flexibly applied to QTL 
detection from arbitrary pedigrees.

As presented in Figure 4, the statistical power of our method for 
detecting QTL can be influenced by the magnitude of the heritability 
as well as sample size. To help researchers understand what sample 
size is needed in the study of QTL mapping with different levels of the 
heritability, we show how statistical power changes with the product 
of the heritability and sample size. We further explore 4 levels of the 

Figure 5: Power estimates under the product of the heritability and sample 
size.
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heritability (h2 = 0.2, 0.4, 0.6, and 0.8) and 6 levels of sample size 
(n = 150, 180, 210, 240, 270, and 300). The plot of statistical power 
versus the product of all combinations of the above levels of h2 and n 
is reported in Figure 5. We can see from this figure that the statistical 
power exponentially grows as the product of the heritability and 
sample size increases. When h2×n > 120, the statistical power of our 
method for detecting QTL reaches over 80%. That means if the trait 
has low heritability, say 0.2, we need to increase sample size to 600 
in order to have a great power (80%) for the method to detect QTL. 
However, if h2 = 0.8, a sample of size 150 will be enough to reach the 
same power.

Two-trait analysis: Similar to the single trait analysis, we also 
evaluate the performance of our proposed two-trait penalized 
likelihood regression approach in all 36 (=3x3x4) scenarios (a 
combination of h2 ∈ {0.4, 0.6, 0.8}, r ∈ {0.4, 0.6, 0.8}, and 4 pedigree 
structures). We show in Figures 6 and 7 that the estimated additive 
and dominant effects for all scenarios have clear peaks at the QTL 
locations we assigned and non-QTL effects are close to zero. The 
estimated power of QTL detection is shown in Figure 8. With a 
low heritability (h2 = 0.4), the average power ranges from 54.9% to 
68.3% across three levels of correlation coefficient and four pedigree 
structures. The power increases to a range from 84.3% to 90.6% with 
h2 = 0.6 and goes from 93.3% to 98% with h2 = 0.8. Compared with 

Figure 6: The estimated additive effects against marker positions (two-trait).

Figure 7: The estimated dominant effects against marker positions (two-trait).

Figure 8: Power estimates under different scenarios from two-trait analysis.

single trait analysis, the estimated power of QTL detection performs 
slightly higher in the two-trait analysis. As we expected, taking the 
correlation between traits and analyze them jointly gains more power 
than analyzing each trait separately.

Discussion
In this study, we propose two methods (single- and two-trait 

penalized likelihood regression models) to detect multiple QTL 
that are associated with multiple correlated traits while relaxing the 
assumption of independence among observations. Simulation study 
shows that both methods have moderate to great power in detecting 
QTL for traits with medium to high heritability. Although the power 
of detecting a QTL with a low minor allele frequency is not as good as 
we expected, the statistical power might be improved significantly by 
increasing the sample size.

As complex traits are usually measured by more than one 
trait, appropriate statistical models that can handle multiple traits 
simultaneously are currently under development but in a high 
demand, especially in the explosion of high-dimension data sets 
nowadays. The contribution of this study is to provide researchers an 
alternative and powerful approach for mapping QTL responsible for 
multiple correlated traits.

Although our proposed methods perform excellent in most of the 
common scenarios we explored, some challenges still exist. First of 
all, the choice of marker density for QTL mappings often decided by 
researchers. The decision of using a dense, sparse, or evenly spaced 
marker map may depend on the experimental costs or researchers’ 
preference [23-26]. If only a sparse map is available, we suggest 
combining the proposed methods with an interval mapping method 
to increase the resolution of genetic markers and detect putative QTL 
within a tested region [27]. This will be an extension of penalized 
maximum likelihood method from marker-based mapping to interval 
mapping.

Moreover, our methods do not consider epistasis – interaction 
among genes and/or environment. One of the complications in 
modeling epistasis using an oversaturated model is the architecture 
among interaction components, such as types of interaction (gene 
by gene and gene by environment) and numbers of interaction. For 
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instance, if there are 1000 markers and only two-way interactions 
are considered, the number of genetic effects would increase to 
around 500,000. Although penalized maximum likelihood method 
can handle different types of epistasis as well as large number of 
interaction, computational burden is still one of the major concerns. 
Further studies should focus on developing new statistical approach 
to handle this issue including the development of fast computational 
algorithms.

Finally, the proposed methods can provide clear peaks for large 
QTL effects, whereas shrink small QTL effects towards zero, which 
may result in the failure of detecting these small QTL effects. It is 
reasonable to ask whether small QTL effects can be excluded by 
shrinking these effects towards zero, even though small QTL effects 
are hard to detect [14]. Modification of proposed methods, such as 
incorporating a bias correction coefficient in the penalized maximum 
likelihood function [28], may be addressed to improve the power of 
QTL detection with small effects.
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