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Abstract

Receiver operating characteristic (ROC) curves are a popular tool for 
evaluating continuous diagnostic tests. However, the traditional definition of 
ROC curves incorporates implicitly the idea of “hard” thresholding, which cannot 
encompass the situation when some intermediate classes are introduced 
between test result positive and negative, and also results in the empirical curves 
being step functions. For this reason, we introduce here the definition of soft 
ROC curves, which incorporates the idea of “soft” thresholding. The softness of 
a soft ROC curve is controlled by a regularization parameter that can be selected 
suitably by a cross-validation procedure. A byproduct of the soft ROC curves is 
that the corresponding empirical curves are smooth. The methods developed 
here are then examined through some simulation studies as well as a real 
illustrative example.

Keywords: Cross-validation; Diagnostic test; Intermediate class; 
Regularization parameter; Thresholding

particular, the discontinuity of the binary classifier results in the 
corresponding estimated ROC curve being a step function, while the 
underlying ROC curve is likely to be smooth. Consequently, due to 
the discontinuity in the step function, the variability of the estimated 
ROC curve becomes large.

To overcome these disadvantages, we consider soft-thresholding 
scheme,

  

where the value ? Is between 0 and 1 and will be discussed in 
the next section, and δ is a regularization parameter controlling 
the softness. In particular, when δ=0, the soft thresholding simply 
becomes the hard thresholding. When decision-making rule Iδ 
is applied with threshold c, the sensitivity (a.k.a. the true positive 
probability) equals E{Iδ(T−c)|D=1} and the specificity (a.k.a true 
negative probability) equals E{1−Iδ(T−c)|D = 0}.

The rationale of this soft-thresholding scheme is that if the test 
result is close to the given threshold c, then one may be indecisive 
about the status of the disease. Hence, we refer to Iδ (∙) as the indecisive 
function. And the probability model within the intermediate class 
can be formulated by? In the indecisive function. We will show that 
different indecisive functions will result in different soft ROC curves. 
The idea used here is similar in principle to the one used in designing 
randomization tests to achieve a given significance level in hypothesis 
testing [5]. The indecisive function has been considered in the 
literature of ROC analysis. Many authors have used smooth functions 
to approximate the indicator function, which can also be considered 
as indecisive functions. For example, Liu et al.  [6] and Liu and Tan 
[7] used an S-type function to approximate the indicator function for 
the empirical False Positive Rate (FPR) and True Positive Rate (TPR). 
Huang et al. [8], Wang et al. [9], and Ma and Huang [10,11] used 
the sigmoid function to approximate the indicator function in the 
empirical estimate of the Area Under the ROC Curve (AUC).

Introduction
Receiver Operating Characteristic (ROC) curves is a popular tool 

for evaluating continuous diagnostic tests; see, for example, Pepe 
[1]. However, the traditional definition of ROC curves incorporates 
implicitly the idea of “hard” thresholding. To be specific, let T be the 
outcome of a continuous diagnostic test and D be the disease status. 
Given a threshold c, the hard thresholding scheme defines a subject as 
diseased 1D

∧ = 
 

 if the test result T = t exceeds c, and as non-diseased 
0D

∧ = 
 

 otherwise. It thus results in a binary classifier,

  

The ROC curve is then a graphical plot of true positives, 
E{I(T−c)|D=1}, versus false positives, E{I(T−c)|D=0}, for −∞<c<∞. It 
can be expressed as

where F (∙) and G(∙) are the distributions of T , given D = 0 and D 
= 1, respectively.

However, from the medical practitioners point of view, if the test 
result is close to the given threshold c, then one may be indecisive 
about the status of diseases. This is a common situation for tests 
with ambiguous thresh- olds (e.g., prostate-specific antigen, which 
is shown to be not a dichotomous marker [2]. Thus, practitioners 
tend to implement an intermediate class between the negative and 
positive [3], within which patients are diagnosed as diseased or non-
diseased according to some probability model. Hozo and Djulbegovic 
[4] provide a definition of acceptable regret threshold to explain 
such phenomenon. They demonstrate that different practitioners 
might adapt different acceptable regret thresh- olds for withholding 
treatment even when the diagnostic tests exceed the pre-defined 
threshold. Unfortunately, the existing hard-thresholding scheme 
does not incorporate such intermediate classes. Furthermore, 
there are other disadvantages in the hard thresholding scheme. In 
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Instead of looking for an approximation, in this work, we 
examine the definition of ROC curves directly and introduce the soft 
ROC curves based on the soft-thresholding. More importantly, we 
build a bridge between the approximation of an ROC curve and the 
approximation of its AUC. More- over, continuity of the proposed 
soft ROC curves is a promising byproduct, although it is not our 
primary goal. We should point out that in the literature of ROC; 
many authors have discussed methods to smooth ROC curves. For 
example, Zou et al. [12] proposed a non-parametric estimator from 
kernel estimates of the distribution functions F and G. Peng and Zhou 
[13] proposed a local linear regression for the ROC curve, while Ren 
et al. [14] proposed a Penalized Spline Linear Mixed-Effects model 
(PSLME). In this paper, we demonstrate that the proposed soft ROC 
method not only has similar performances when compared to the local 
linear regression and the PSLME methods in terms of smoothing, but 
also has a clearer explanation to the smoothing parameter and much 
easier implementation.

The remainder of this paper is organized as follows. In Section 2, 
we define the soft ROC curve, and derive some of its properties. In 
Section 3, we propose methods to choose the regularization parameter 
δ. In Section 4, the proposed methods are examined through some 
simulation studies and a real data example. Finally, some discussion 
is made in Section 5, and all technical details are relegated to the 
Appendix.

Soft ROC Curves
When an indecisive function Iδ is applied with threshold c, we can 

define a soft ROC curve as follows.

Definition 1: A plot of true positives, E{Iδ (T−c)|D=1}, versus false 
positives, E{Iδ (T−c)|D=0}, for all possible values of c, is called the soft 
ROC curve with respect to the indecisive function Iδ.

Assume that a test is performed on m non-diseased subjects, 
yielding testing outcomes Xi, and on n diseased subjects, yielding 
outcomes Yj . Then, an empirical estimate of the soft ROC curve w.r.t. 
Iδ is

 ( )  ( ) ( )11 1 , 0,1 ,R p G F p pδ δ δ

∧
− 

= − − ∈ 
     (1)

where  ( ) ( )1

1 n
jj

G c I Y c
nδ δ=

= −∑  and  ( ) ( )1

1 m
ii

F c I X c
mδ δ=

= −∑ . The area 
under the soft ROC curve w.r.t. Iδ , denoted by AUCδ , is derived in 
the following theorem, and its proof is presented in the Appendix A.

Theorem 1: For the soft ROC curve w.r.t. to the indecisive function 
Iδ (·), we have 

  AUCδ=E{Kδ(Y−X)},

where X∼F (∙), Y∼G(∙),     , and I˙δ 
is the derivative of Iδ.

We remark that for functions with piecewise constant, the 
derivative is defined by using Dirac Delta function. From Theorem 1, 
we see that an unbiased estimate of AUCδ is given by

    ( )
1 1

1 .
m n

j i
i j

AUC K Y X
mn

δ δ
= =

= −∑∑     (2)

It is worth emphasizing if the hard-thresholding decision rule 
(H) is applied, then we use the classical ROC curve to evaluate its 
performance, Whereas if the soft-thresholding decision rule (S) is 
applied, then we use the newly proposed soft ROC curve to evaluate 

its performance. In other words, which type of ROC curves is used for 
evaluation depends on the underlying decision rule that is applied. 
Actually, it is not necessary to define a new ROC curve for any new 
decision rule. However, we define soft curves for at least three reasons. 
First, the soft-thresholding decision rule is simple and appropriate. 
Second, the resulted empirical soft ROC curve is continuous. Third, 
the relationship between Kδ and Iδ is mathematically beautiful.

Two-sided soft ROC curves
We can categorize indecisive functions and soft ROC curves into 

one-sided and two-sided according to the following definition.

Definition 2: If Iδ(t−c)=0 for t<c, Iδ and the corresponding soft 
ROC curve are said to be one-sided. Otherwise, they are said to be two-
sided.

We now present some examples of indecisive functions Iδ and 
their correspondingsss Kδ , which are all displayed in Figure 1. The 
corresponding detailed calculations are presented in the Appendix B.

Example 1: Order 0 two-sided indecisive function is given by

 

where 1{∙} is an indicator function. This implies that the disease 
status is totally indecisive (the chance of being diagnosed as diseased is 
50%) when t is within δ of threshold c. The corresponding Kδ is

  

Example 2: Order 1 two-sided indecisive function is given by 
Appendix C

  

This indecisive function is continuous, and it implies that the 
probability of being diagnosed as diseased is linearly increasing in t − c 
when t is within δ of threshold c. The corresponding Kδ is

  

where sign(·) is the sign function.

Example 3: Order ∞ two-sided (Sigmoid) indecisive function is 
given by Appendix D

An appealing property of the sigmoid function is that it has infinite 
derivatives. The corresponding Kδ is

   

This Kδ also enjoys the property of having infinite derivatives.

One-sided indecisive functions
In this subsection, we present two examples of one-sided indecisive 

functions Iδ and their corresponding Kδ, which are displayed in Figure 
2. The indecisive functions are similar to the ones in Examples 1 and 
2, but the order 1 one-sided Kδ takes on a reasonable form, unlike its 
two-sided counterpart. The corresponding detailed calculations are 

( ) ( ) ( )K Y X I Y c I X c dcδ δ δ

∞

−∞
− = − −∫



( ) { } { } { }1 31 2 0 1 0 2 1 2 .
4 4

K s s s sδ δ δ δ= − ≤ < + ≤ < + ≥

( ) { } { }11 1 ,
2

I t c t c t cδ δ δ δ− = − ≤ − < + − ≥

( ) ( ) { } { }1 1 1 1 .
2 2

I t c t c t c t cδ δ δ δ
δ

 − = + − − ≤ − < + − ≥  

( ) ( ) { } { }
2
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2 4 2
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presented in the Appendix E.

Example 4: Order 0 one-sided indecisive function is given by

 ( ) { } { }11 0 1
2

I t c t c t cδ δ δ− = ≤ − < + − ≥ .

This implies that the disease status is totally indecisive when t is in 
the interval [c,c+δ). The corresponding Kδ is

( ) { } { } { }1 31 0 1 0 1
4 4

K s s s sδ δ δ δ= − ≤ < + ≤ < + ≥
.

Example 5: Order 1 one-sided indecisive function is given by 
Appendix F

( ) ( ) { } { }1 1 0 1I t c t c t c t cδ δ δ
δ

− = − ≤ − < + − ≥
.

This implies that the probability of being diagnosed as diseased 
is linearly increasing in t − c when t is in the interval [c, c + δ). The 
corresponding Kδ is

( ) ( ) { } { }
2

2

1 1 1
2 2

s sK s sign s s sδ δ δ δ
δ δ

 
= + − − ≤ < + ≥ 
  .

Surprisingly, the minor change in this indecisive function from its 
two-sided counterpart results in a big change in the corresponding Kδ, 
and Kδ has a continuous derivative. In what follows, we will focus on 
this indecisive function. Of course, the procedures developed here for 
this indecisive function can also be applied to other indecisive functions.

Selection of Regularization Parameter
Method based on softness

The regularization parameter δ controls the softness of a soft 
ROC curve. The bigger the δ is, the softer the ROC curve is. When δ 
is taken as zero, it becomes the traditional ROC curve as mentioned 
earlier. Hence, it is important to select an appropriate regularization 
parameter δ. First, we define the softness of a soft ROC curve as 
follows.

Definition 3: For a soft ROC curve with a regularization parameter 
δ, the softness is defined as

  

( )
( )

1
0

P Y X
P Y X

δ
α

− >
= −

− > ,

where X ∼ F (·) and Y ∼ G(·). The hardness is then naturally defined 
as 1 − α.

The softness α indirectly controls the form of the empirical soft 
ROC curve estimated from (1). For example, if the order 1 one-sided 
indecisive function is used, the softness ranges from 0 (when δ = 0 in 
which case the soft ROC curve becomes a step function) to 1 (when 
δ = ∞ in which case the soft ROC curve becomes a diagonal line). As 
mentioned before, the idea of soft-thresholding is similar to the one 
used in designing randomization tests in hypothesis testing. In this 
regard, the softness defined above is analogous to significance level in 
the setting of randomization tests.

Order 0 two-sided,    δ= 2 Order 0 two-sided, δ = 2 
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Figure 1: Two-sided Iδ and their corresponding Kδ.
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Figure 3 shows the plots of δ versus the differences of means of 
diseased and non-diseased populations for some choices of α. Here, 
we denote µ = E{Y} − E{X} and assume that the two populations are 
normal with unit standard deviation.

Evidently, a non-parametric estimate of softness is given by

( )
( )

1 1

1 1

1
m n

j ii j
m n

j ii j

I Y X

I Y X

δ
α = =

= =

− −
= −

−

∑ ∑
∑ ∑    (3)

For a pre-specified α, we can choose a regularization parameter 
δ. But the determination of α is quite subjective. Recall that the same 
issue is present in hypothesis testing wherein the significance level is 
usually taken to be 5%. From the limited simulation studies we have 
carried out, we would suggest considering softness between 0.1 and 
0.3. In the next subsection, we propose a cross-validation procedure 
for selecting an appropriate δ without prefixing α.

Method based on cross-validation
In this subsection, we propose a Cross-Validation (CV) 

procedure for selecting δ by minimizing the Average Mean Squared 
Error (AMSE) [14],

                    
( )  ( ) ( )

2

1

1 K

k k
k

AMSE E R p R p
K δδ

=

   = −    
∑                      (4)

where pk is in a fine grid of (0,1),k =1,· · ·,K.

For this purpose, we randomly split the sample into two parts, 
or we randomly split the diseased and non-diseased samples into 
two parts each. For each random split, we treat one part as a training 
sample and the other as a validation sample. Based on the training 
sample, we construct the soft ROC curve and obtain the estimate  ( )1

Rδ

, and based on the validation sample, we construct the regular ROC 
curve and obtain the estimate  ( )2

R . By repeating this random split 
many times, we obtain the following cross-validation estimate of the 
AMSE:

 


( )
( ) 

( )
( )

2
1, 2,

1 1

1 1 H K h h

k k
h k

CV R p R p
H K

δδ
= =

 = −  ∑∑
,                (5)

where H is the number of random splits. Then, δ is chosen as the 
one that minimizes CVδ in (5).

The split ratio (training/validation) can be chosen to be either 
1:1 or 2:1. From our limited simulation studies, we observe that 
the results are not sensitive to the split ratio. Such an idea of cross-
validation has been considered by many authors including Bickel and 
Levina [15]. In theory, Shao [16] examined the consistency of cross-
validation procedures with different split ratios in linear regressions.

Numerical Results
In this section, the proposed methods are examined through 

Monte Carlo simulation studies and a real data example. The R codes 
are available from the authors upon request.

Simulation Study
We investigated the performance of the CV procedure through 

two simulation studies. Let Y be the diseased population and X be the 
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Figure 2: One-sided Iδ and their corresponding Kδ.

Figure 3: Plots of δ versus mean difference µ for some given α.
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non-diseased population. We considered two types of distributions: 
(1) both X and Y follows normal distributions; and (2) both X and Y 
follows double exponential distributions. We considered four settings 
of means: (i) (µy, µx) = (1, 0); (ii) (µy, µx) = (1.5, 0); (iii) (µy, µx) 
= (2, 0); and (iv) (µy, µx) = (2.5, 0). We considered two settings of 
variances: (A) V ar(Y ) = 1 and V ar(X) = 1; and (B) V ar(Y ) = 2 and 
V ar(X) = 1. Therefore, there were 2 × 4 × 2 = 16 data generating 
settings. The sample sizes were taken as m = n = 50 or m = n = 100, 
and the split ratio was set as 2:1. For each data generating setting, 300 
replications were performed to calculate the efficiency measure

               

      (6)

and the efficacy measure,

                                                    (7)

where  cvδ  is the δ chosen by the CV procedure. The simulation 
results so obtained are summarized in Table 1. These results show 
that all efficiencies are less than 1, while efficacies are all close to 1, 
which indicates the optimality of  cvδ . From this table, we also observe 
that  cvδ  is decreasing when the difference µy − µx increases. In fact, 
when Y and X are well-distinguished, the indecisive interval vanishes.

We also compared the smoothed empirical ROC curves; a 
promising byproduct of the proposed soft ROC method with the 
local linear regression method [13] and PSLME model [14]. In this 
study, four datasets were generated from two normal distributions 
with unit standard deviation and means being (µy, µx) = (1.5, 0). And 
the sample size were taken as m = n = 20, m = n = 50, m = n = 100, 
and m = n = 500. The results are presented in Figure 4, which show 
that if the goal is to smooth the empirical ROC curve, all the methods 
perform similarly.

Pancreatic cancer serum biomarkers example
The dataset comes from a case-control study at Mayo Clinic 

which included 90 patients with pancreatic cancer and 51 subjects 
with pancreatitis. These data were originally analyzed by Wieand 
et al. [17]. Two continuous positive scale serum biomarkers were 
available to diagnose a patient with pancreatic cancer: CA-125, a 
cancer antigen, and CA-19-9, a carbohydrate antigen. We applied 
the CV method to select regularization parameters for CA-125 and 
CA-19-9, which turn out to be 0.04 and 0.115, respectively. The 
corresponding empirical ROC, soft ROC curves, and smoothed ROC 
curves by local linear regression and PSLME model are displayed in 
Figure 5 and Figure 6. Again, for the overall performance, we observe 
that the smoothed ROC curves estimated from the soft ROC method 
are similar to the smoothed curves from existing smoothing methods.

Discussion
Many authors have considered using the sigmoid function to 

approximate the indicator function when calculating the AUC, but 
without clear reasoning. In this paper, by introducing soft ROC 
curves, we have provided a connection between the approximation 
to ROC curve and the approximation to the corresponding AUC. 
This explains in some way as to why we can use some function to 
approximate the indicator function while calculating the AUC.

The selection of the regularization parameter in a soft ROC curve 
is a critical issue. The application of the proposed cross-validation 
procedure is straightforward. Since the cross-validation is one of the 
most popular methods for model selection, we have examined it in 
the present context, by means of Monte Carlo simulation studies and 
a real example, and have shown that it performs well. However, the 
consistency of the proposed cross- validation procedure remains as 
an open problem.

An asymptotic estimate of the variability of the estimated soft 
ROC curve can be easily developed by following arguments similar 
to those of by Pepe [1]. However, if the asymptotic variance is not 
derivable, one can also use the boostrap.

( )
( )0

cvAMSE

AMSE

δ

( )
( )min

cvAMSE

AMSEδ

δ

δ

Figure 4: Comparisons of smoothed empirical ROC curves.
Note: Empirical: empirical ROC curve; Soft: soft ROC curve; PS: PSLME 
model; Local linear: local linear regression method

Figure 5: ROC curves for Pancreatic Cancer Serum Biomarkers Example: 
CA-125.
Note: Empirical: empirical ROC curve; Soft: soft ROC curve; PS: PSLME 
model; Local linear: local linear regression method
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The choice of the indecisive function varies in different practical 
scenario. For example, if one wants to model the decision behaviors 
of the medical practitioners, he/she can use the order 0 two-
sided indecisive function, where the chance of being diagnosed 
as diseased is 50% when the test result is within the soft threshold, 
or the order 1 one-sided indecisive function, where the probability 
of being diagnosed as diseased is linearly increasing when the test 
result is within the soft threshold. Moreover, if one focuses on the 
computational issue of the ROC curves, the order infinity two-sided 
function (sigmoid function) can be used [8,11].

In the future study, we will also generalize the indecisive function 
by allowing the regularization parameter to vary across different test 
results. Under appropriate generalizations, the indecisive function 
becomes a risk type function; the corresponding soft ROC and AUC 
thus have direct applications on clinical trials.
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