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Abstract
Molecular differences between cancerous and healthy tissue have become 

key targets for novel therapeutics specific to tumor receptors. However, 
cancer cell receptor expression can vary within and amongst different tumors, 
making strategies that can quantify receptor concentration in vivo critical for 
the progression of targeted therapies. Recently a dual-tracer imaging approach 
capable of providing quantitative measures of receptor concentration in vivo 
was developed. It relies on the simultaneous injection and imaging of receptor-
targeted tracer and an untargeted tracer (to account for non-specific uptake 
of the targeted tracer). Early implementations of this approach have been 
structured on existing “reference tissue” imaging methods that have not been 
optimized for or validated in dual-tracer imaging. Using simulations and mouse 
tumor model experimental data, the salient findings in this study were that all 
widely used reference tissue kinetic models can be used for dual-tracer imaging, 
with the linearized simplified reference tissue model offering a good balance of 
accuracy and computational efficiency. Moreover, an alternate version of the 
full two-compartment reference tissue model can be employed accurately by 
assuming that the K1s of the targeted and untargeted tracers are similar to avoid 
assuming an instantaneous equilibrium between bound and free states (made 
by all other models).

Keywords:  Dual-Tracer; Tumors; GARTM; BFM

receptor concentrations tumors [12]. The importance of using this 
“dual-tracer” approach over “reference tissue” approaches which 
have been used for over a decade in brain studies to quantify 
neurotransmitter receptor concentrations [13] was also demonstrated 
to be critical when attempting to quantify receptor concentration in 
tumors [14].

To date, the dual-tracer Receptor Concentration Imaging (RCI) 
approaches have rather indiscriminately employed one of the two 
early reference tissue models, Lammertsma and Hume’s “simplified 
reference tissue model” [15] and Logan et al.’s “graphical analysis” 
approach [16], for no other reason than that they were easily adaptable 
to the dual-tracer framework. Even though many of the assumptions 
made in reference tissue models hold for dual-tracer RCI, it is not 
necessary that these models are optimal since additional assumptions 
can be made with dual-tracer RCI: e.g., that the delivery rates (K1) 
of both tracers are the same if the chemical properties of the tracers 
are similar. Using both simulated and experimental data, the current 
study was carried out to identify the optimal data analysis workflow 
for translating targeted and untargeted tracer uptake curves in tumors 
to receptor concentration images, with particular emphasis on noise 
characteristics and computational cost of kinetic model data fitting.

Theory
Compartment models for dual-tracer kinetic analyses.

Reference tissue compartment models are ideally suited for dual-
tracer RCI since the setup of the dual-tracer compartment model 
(Figure 1) is nearly identical to that of the reference tissue model 

Introduction
In cancer research, 95% of new therapeutics fail to demonstrate 

significant outcomes in clinical trials and are therefore abandoned 
after substantial investment [1,2], even though many of these 
therapeutics are designed to target cancer-specific receptors, being 
the products of highly sophisticated studies in cancer molecular 
expression [3]. While there is no consensus as to why so many drugs 
are failing clinical trials, it is clear that drug developers require new 
non-invasive methods to quantify cancer receptor concentrations in 
vivo in order to better understand the relationship between receptor 
availability, and drug targeting and binding [4]. Unfortunately, it has 
been difficult to extract quantitative information about tumor receptor 
concentrations with conventional molecular imaging strategies. They 
typically involve injecting a subject with an imaging tracer targeted to 
a receptor of interest, waiting some duration of time for any unbound 
tracer to exit the tissues, and assuming the remaining measured signal 
arises from tracer that is bound to its specific receptor. The problem 
is that drug delivery research in oncology has demonstrated that 
many physiological and pathophysiological factors (e.g., blood flow, 
vascular permeability, interstitial pressure, and lymphatic drainage) 
can significantly influence the uptake of a targeted tracer in a tumor 
[5-8]. 

In response, “dual-tracer” imaging utilizes the uptake of a second 
tracer, similar to the targeted tracer but designed to be untargeted, to 
account for any non-receptor mediated uptake of the targeted tracer 
[9-11]. This approach was recently advanced by the development and 
validation of the first imaging methodology capable of quantifying 
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[15]. Both models recognize that non-specific uptake of a targeted 
tracer can significantly affect the relationship between tracer uptake 
and tracer binding or receptor concentration. The reference tissue 
model accounts for binding by employing the temporal uptake of 
the targeted tracer in a region devoid of targeted receptor (reference 
tissue) to account for non-specific uptake; while the dual-tracer 
approach employs the uptake of a second tracer, similar in structure 
to the targeted tracer but untargeted, in the same tissue as the targeted 
tracer to account for non-specific uptake. On the surface it would 
seem that whatever kinetic model was best for one approach would 
also be best for the other, but there are subtle differences between the 
approaches that can impact the choice of the optimal kinetic model:

1) The plasma input function, Cp: in the reference tissue model, 
the reference input and the region-of-interest input intrinsically have 
the same plasma input function, so this is not a concern; however, in 
the dual-tracer model, both tracers used must have the same plasma 
kinetics of the course of imaging.

2) K1/k2 equivalency: in reference tissue models, it is assumed 
that the ratio of the tracer’s extravasation and tissue-efflux rates, K1 
and k2, are equivalent in the reference tissue and the region of interest; 
whereas, dual-tracer models assumes that these leakage kinetics are 
the same between tracers in all tissues.

In this study, six different reference tissue models are evaluated in 
terms of their ability to accurately and efficiently estimate tumor cell-
surface receptor concentration from dual-tracer data. The models 
included 1) the “Full Reference Tissue Model” [FRTM] [17,18], 
later modified to a “reduced Full reference Tissue model” [Reduced 
FRTM] 2) the “Simplified Reference Tissue Model” [SRTM] [15], 3) 
the original Graphical Analysis Reference Tissue Model [GARTM] 
[16], 4) a linearized version of the SRTM [SRTM_lin] [19], 5) a 
modification to the GARTM [GARTM_mod] [20], and 6) the “Basis 
Function Method” [BFM][21]. While a full derivation of these six 
models is outside of the scope of this article, a presentation of the key 
mathematical expressions converted to a dual-tracer nomenclature 
are provided below. The FRTM can be expressed as:

            (1)

Where ROIT(t) and ROIU(t) represent the measured uptake 
curves of the targeted and untargeted tracers, respectively, in any 
region of interest, as a function of time, t; R1 is the ratio of the rates 
of extravasation (K1) of the targeted tracer and the untargeted tracer; 
k2 is the rate of efflux of the targeted tracer; and k3 and k4 are the rates 
of association and dissociation of the targeted tracer, respectively 
(Figure 1). 

Likewise, the SRTM can be expressed as:

 

            (2)

Where BP, the “binding potential”, is equivalent to k3/k4, and 
is a key parameter since it represents the product of the receptor 
concentration (the parameter of interest) and the affinity of the 
targeted tracer for its receptor (which can in most cases be measured 
ex vivo) [13]. Going on, the format of the GARTM can be represented 
by:

               (3)

Where u is a dummy time variable to integrate over, int is an 
often neglected intercept term in this linear relationship with slope 
1+BP at time, t > t*, where t* represents the time it takes for the Cf 
and Cb to reach a constant ratio (quasi-equilibrium). The format of 
the SRTM_lin can be expressed as follows:

             (4)

Furthermore, the format of the GARTM_mod can be expressed 
as follows:

            (5)

Where int’ represents another neglected intercept that is different 
in composition than the one in Equation (3).

Finally, Gunn’s Basis Function Method (BFM) is derived from 
Equation (2) and is formulated as:

             (6)

whereθ1= R1, θ2 = k2– R1k2/(1+BP), Bi are the so-called basis 
functions defined as:

        
           (7)

andθ3 = k2/(1+BP); so that Equation (6) can be optimized for θ1and 
θ2 in a linear least squares sense; provided that θ3 is varied iteratively 
over a specified range.

Materials and Methods
Animal experiments

Targeted and untargeted tracer uptake curves were measured 
in two different tumor lines grown subcutaneously in athymic mice 
(n = 10, Charles River, Wilmington, MA). The targeted tracer was a 
ligand for the Epidermal Growth Factor Receptor (EGFR), a receptor 
that is over expressed in many cancers [22]. Specifically, the tracer 
was a near-infrared fluorescent molecule bound to native epidermal 
growth factor, IRDye-800CW-EGF (LI-COR Biosciences, Lincoln, 
NE). The untargeted tracer was a free near-infrared fluorescent 
tracer emitting fluorescence at a separate wavelength, IRDye-700DX 
carboxylate (LI-COR Biosciences). The two different tumor lines 
were selected so as to represent different levels of Epidermal Growth 
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Figure 1: A photograph of the dual-tracer experimental setup of a U251 mouse with tumor exposed is presented in (a): targeted tracer (red) and untargeted 
tracer (green) fluorescence uptake images at 60 min post-tracer injection are presented in (b). The tumor area has been marked by the dashed rectangle 
(b), and the corresponding compartment models (c). ROIT(t) and ROIU(t) represent the measured uptake curves of the targeted and untargeted tracers, 
respectively, in any region of interest, as a function of time, t; vp is the blood volume percentage in the tumor; K1 and k2 are the rates of exchange of the tracers 
from the blood concentration (Cp) to the interstitial space (Cf for the targeted tracer and CU for the untargeted tracer) and back, respectively; and k3 and k4 are 
the rates of association and dissociation of the targeted tracer to its receptor in a bound state (Cb). Typical uptake curves of the targeted tracer (red) and the 
untargeted tracer (blue) in a single pixel in a low signal-to-noise scenario is presented in (e). The smooth “fits” are polynomials fit to the data to determine the 
noise characteristics.



Austin J Biomed Eng 1(1): id1002 (2014)  - Page - 04

Kenneth M Tichauer Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.org

Factor Receptor (EGFR) and were each implanted into five of the 
ten immune-deficient mice (Charles River, Wilmington, MA). Five 
mice were inoculated with a human neuronal glioblastoma (U251; 
supplied from Dr. Mark Israel, Norris Cotton Cancer Center, 
Dartmouth-Hitchcock Medical Center), a cancer cell line known 
to express moderate levels of EGFR [23,24]; and another five mice 
were inoculated with a human epidermoid carcinoma (A431; ATCC, 
Manassas, VA), known to express a very large amount of EGFR [25]. 
In all cases, the tumors were introduced by injecting 1x106 tumor cells 
in Matrigel® (BD Biosciences, San Jose, CA) into the subcutaneous 
space on the left thigh of the mice. The tumors were then allowed to 
grow to a size of approximately 150 mm3 before imaging.

The mice were anesthetized with ketamine-xylazine (100 mg/kg: 
10 mg/kg i.p.) and the superficial tissue surrounding the tumors was 
removed. Each mouse was then placed tumor-side down on a glass 
slide and loosely secured with surgical tape (Figure 1). Once plated, 
the mice were positioned onto the imaging plane of an Odyssey 
Scanner (LI-COR Biosciences, Lincoln, NE). The Odyssey Scanner 
employs raster scanning and two lasers (one emitting at 685 nm 
and another at 785 nm) to excite two fluorophores simultaneously, 
pixel-by-pixel, and utilizes a series of dichroic mirrors to decouple 
fluorescence from the LI-COR 680 or 700 nm fluorescent tracers 
and the LI-COR 800 nm fluorescent tracer, respectively. All mice 
were injected with a cocktail of 1 nanomole of an EGFR targeted 
fluorescent tracer and 1 nanomole of an untargeted fluorescent tracer: 
the untargeted tracer was a carboxylate form of the IR Dye 700DX 
NHS Ester (LI-COR Biosciences, Lincoln, NE) that was reacted with 
water for 3h at room temperature to convert the reactive NHS Ester 
to a non-reactive carboxylate (as per manufacturer’s instructions 
to reduce nonspecific binding), and the targeted tracer was IR Dye 
800CW-EGF (LI-COR Biosciences, Lincoln, NE). The mice were then 
imaged at approximately 3-min intervals for 1h after injection of the 
fluorescent tracers.

Image analysis
The first step in the image analysis was to remove autofluorescence 

(background fluorescence from the datasets. This was done by 
subtracting a pre-injection image of targeted and untargeted 
tracer channel fluorescence from all subsequent post-injection 
images [26]. Next, the potential differences in detection efficiency 
at the two wavelengths were normalized by taking the ratio of 
measured fluorescence from the targeted and untargeted tracers 
in a region of interest devoid of targeted receptor, and multiplying 
this “normalization” factor with all uptake images [12]. A pixel-
wise fitting procedure was then performed according to each of the 
six aforementioned models in the tumor and surrounding tissues 
to calculate parametric maps of binding potential (which for the 
targeted tracer employed, is equivalent to EGFR concentration in 
units of nM because the affinity of EGF for EGFR is 1 nM-1[27] and 
receptor concentration is equivalent to the product of the binding 
potential and the tracer affinity [13]). In the case of the FRTM, 
SRTM, and SRTM_lin models, their use was additionally tested when 
holding the parameter R1 = 1, since it is the ratio of K1s of the targeted 
and untargeted tracers, which should be equivalent[14]. MATLAB 
(Natick, MA) was used for all curve fitting procedures and the built 
in function lsqcurvfit() was used for non-linear fitting (FRTM & 
SRTM), while polyfit() was used for the GARTM and GARTM_mod 

models, and the back-slash operator was used for SRTM_lin model. 
For the BFM model, the simulation was performed using both the 
conventional QR decomposition approach [21]and the back-slash 
operator. All curves were interpolated to 0.1 min temporal resolution 
using interp1() with a spline approach prior to the use of convolution 
or integration algorithms in MATLAB to avoid discretization errors.

Simulations
As an initial test of the six models described in the Theory, 

targeted and untargeted tracer uptake curves were simulated for a 
typical level of EGFR expression in a moderate expressing tumor (2 
nM [12]). The targeted tracer uptake curve was simulated based on a 
full solution to the two-tissue compartment model depicted in Figure 
1 - that can be found in Appendix A of Lammertsma et al. [18] and the 
untargeted tracer uptake curve was simulated based on a one-tissue 
compartment model, also known as the Kety model [28]. Each of these 
model-types requires a plasma input function, i.e., the concentration 
of the tracer in the blood over time, which was chosen from blood 
sampling experiments published previously [29] that were carried 
out in a cohort of 13 mice using the same targeted and untargeted 
tracers used in the current study. Furthermore, the rate constants K1-
k4 needed to be assumed. For the purposes of the simulations here we 
assumed that the untargeted tracer was an ideal pair for the targeted 
tracer and therefore K1 and k2 were assumed to be equivalent between 
the tracers. Values of K1 and k2 were chosen based on the work of de 
Lussanet et al. who evaluated these parameters in tumors for different 
sized contrast agents; values associated with the 3.0-kDa agent were 
chosen as it most closely matched the size of the targeted tracer 
employed in the animal experiments (~ 7 kDa): the values were K1 = 
0.013 min-1 and k2 = 0.13 min-1[30]. The disassociation binding rate 
constant k4 is equivalent to koff in enzyme kinetic nomenclature and 
was measured by Zhou et al. to be approximately 0.1 min-1 for EGF 
bound to EGFR [27] - native EGF was the targeting moiety used in the 
animal experiments in this study. Then with binding potentials (k3/
k4) roughly equivalent to 2 for a typical EGFR overexpressing tumor 
line (U251: see Animal experiments), k3 was by association assumed 
to be equal to 0.2 min-1. The binding rates would be equivalent to 
a 2 nM concentration of EGFR using a native EGF based targeted 
tracer. All simulated targeted and untargeted tracer uptake curves 
were interpolated to 1-minute interval time-points from 1 to 60 min 
after tracer injection.

To best represent the actual animal data, a pixel-wise noise 
detection technique was performed to approximate the noise 
variance (percentage) in the Odyssey Scanner images. At each pixel, 
the targeted and untargeted uptake curves at all time points were 
extracted and fitted to a fifth-order polynomial [Figure 1(d)]. The 
standard deviation of the error between the fit and the actual curves 
was averaged over all pixels in a region of interest and normalized by 
the maximum value of the curves to represent an overall measure of 
noise in that region. It was noticed that the noise metric was generally 
less in the untargeted uptake curves compared to the targeted ones 
but, without loss of generality, this fact was not incorporated in 
the simulations. In most cases (for different images and different 
regions of interest), the average noise did not exceed 3% of the signal; 
therefore, 3% Gaussian noise was added to all simulated tracer uptake 
curves prior to employing the kinetic models described in the Theory 
to back-out the simulated EGFR concentration.
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Results and Discussion
Animal experiments

Figure 2 presents the average EGFR concentrations measured 
using all models described in the Theory. All of the models produced 
very similar results with the spread in averages being about 25% of 
the mean. There were no statistically significant differences between 
the results of any of the models except for the GARTM_mod, which 
produced significantly lower estimates of EGFR than all other models 
in both tumor groups (n = 5 in each tumor group, p< 0.05).It should 
be noted here that reference tissue approaches have been applied 
to similar data in a past study resulting in greater than 50% errors 
in EGFR concentration estimation [13]. These results highlight the 
necessity of utilizing dual-tracer methods, despite the added expense 
and inconvenience, because single tracer approaches are simply 
unsuitable for tumor imaging studies.

Figure 3 presents parametric maps from one typical U251 mouse 
and one A431 mouse for each of the tested kinetic models. On the 
whole, the visual quality (in terms of pixel fitting robustness to noise) 
of the parametric maps was adequate and comparable between 
models. Only the SRTM_lin model appeared to suffer from some 
instability. Upon noise analysis (Figure 4), it did not appear than 
the instability in EGFR concentration estimation of the SRTM_lin 
resulted from a heightened sensitivity to noise. Rather, it appears 

as if the model becomes unstable in tissues with very little targeted 
tracer binding. The current implementation of SRTM_lin in this 
paper utilizes a “back-slash” operation in MATLAB; however, future 
applications could include iterative fitting routines that would slow 
the algorithm down, but would allow constraints to be enacted that 
could improve the stability.

There are no quantitative gold standard methods for measuring 
in vivo receptor concentrations, so it is difficult to determine whether 
the GARTM_mod of the other models were more accurate from the 
experimental data alone. In a separate study, ex-vivo rough estimates 
of EGFR concentration in the U251 tumors and A431 tumors were 
1.6 ± 0.4 and 2.7 ± 0.4 nM, respectively [12], suggesting perhaps that 
the GARTM_mod would be most accurate, but the rough estimates 
should not be held as quantitative and therefore cannot be used to 
make any conclusions other than supporting the fact that the A431 
expresses significantly more EGFR than the U251 tumors (a trend 
strongly supported by all models). In a separate cohort of 12 mice 
(6 U251, 6 A431), ex vivo analysis was carried out to determine 
a relative estimate of in vivo EGFR concentration using EGFR-
labelled immunofluorescence [Fig. 2(c) and (d)]. The relative value 
of immunofluorescence for U251 tumors was 2.5 ± 0.1, while 
A431 was 7.2 ± 0.9. These values correlated well with the dual-
tracer methodology measured average in vivo estimates of EGFR 
concentration, which were 1.9 ± 0.3 and 3.8 ± 1.0 nM for U251 and 

 
Figure 2. Box plots of Epidermal Growth Factor (EGFR) concentration estimates from all models are presented in (a) for the human glioma xenograft mice (U251 
cell line) and in (b) for the human epidermoid xenograft mice (A431 cell line). The kinetic models are the Graphical Analysis Reference Tissue Model (GARTM), 
the Simplified Reference Tissue Model (SRTM), the Linearized-SRTM (SRTM_lin), a Modified GARTM (GARTM_mod), a Basis Function Model (BFM), and a 
“Reduced” Full Reference Tissue Model (R-FRTM). The red lines represent the median EGFR concentration estimates. Example EGFR immunofluorescence 
stains of ex vivo U251 and A431 tumor tissue excised from the mice are presented in (c) and (d), respectively, presented on the same fluorescence scale.
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Simulations
Figure 4 and 5 present the results of the simulation studies 

described in the Methods, with numerical results of accuracy, 
precision and computational cost, summarized in Table 1. The 
SRTM, SRTM_lin, and reduced FRTM results all provided the most 
accurate results, with the BFM and GARTM slightly underestimating 
the simulated level of receptor concentration, and the GARTM_mod, 
strongly underestimating the simulated receptor concentration. The 
fact that GARTM_mod does not work for our case was expected, since 
according to the authors of the approach, it has been developed for 
the special case of PET imaging in rats and is not guaranteed to work 
in other frameworks [20]. Interestingly though, in a comparative 
sense, the GARTM_mod appeared to be fair much better in the 
animal experiments than in simulations, and could be considered a 
viable model owing to its computational efficiency and the fact that it 
does not require an estimate of k2 like the GARTM.

With respect to the GARTM, the slight underestimation in 
receptor concentration estimation is a well-known phenomenon 
of the model attributable to a noise bias [31]; however, it should be 
noted that novel adaptations of the GARTM have been developed to 
account for this noise bias [32]. The fact that such an underestimation 
was not observed in the animal experiments compared to the SRTM 

Figure 3: Parametric maps of estimated epidermal growth factor receptor (EGFR) concentration. The SRTM_lin model lacks constraints and thus fails to 
produce maps as ‘clean’ as those generated by other models; as seen from the holes and saturated values in the maps on the top right of the figure.

GARTM SRTM SRTM_
lin BFM R-FRTM GARTM_

mod
Estimated 
Receptor 

Concentration  
(Mean ± SD)

1.9 ± 0.1 2.0 ± 0.1 2.1 ± 0.1 1.9 ± 0.0 2.1 ± 0.1 1.1 ± 0.0

Error in 
receptor 

concentration 
estimate

-0.06 0.04 0.06 -0.12 0.08 -0.89

Elapsed Time 
for 10,000 fits 

(s)
13 240 5 103 838 25

Table 1: Comparison of the models in terms of accuracy and speed. The first and 
third rows show the means and standard deviation (sd) of the graphical analysis 
reference tissue model (GARTM), the simplified reference tissue model (SRTM), 
the linearized-SRTM (SRTM_lin), a modified GARTM (GARTM_mod), a basis 
function model (BFM), and a “reduced” full reference tissue model (R-FRTM) for 
the medium sized particle simulations. The fourth row represents the time taken 
for the models to perform the fit for 10000 iterations. These results and their 
interpretations may vary for different particles and computers.

A431, respectively, averaging all models (assuming zero intercept: p< 
0.05, r = 0.98 for correlation). In addition to this ex vivo analysis, a 
number of simulation studies were carried out to better evaluate the 
accuracy and precision of the various kinetic models.
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Figure 4: Fitting receptor concentration results from applying the six models [graphical analysis reference tissue model (GARTM), the simplified reference 
tissue model (SRTM), the linearized-SRTM (SRTM_lin), a modified GARTM (GARTM_mod), a basis function model (BFM), and a “reduced” full reference 
tissue model (R-FRTM)] – (a)-(f), respectively – to simulated curves with additive Gaussian noise of 3% for 10,000 iterations. The red dashed and the blue 
dotted vertical lines indicate the positions of the means of the fit and the true BP respectively. The scales for horizontal axes are the same in all figures except 
GARTM_mod, which produced out of bound values for Binding Potential.

Figure 5: Comparison of fitting performances of different models [graphical analysis reference tissue model (GARTM), the simplified reference tissue model 
(SRTM), the linearized-SRTM (SRTM_lin), a modified GARTM (GARTM_mod), a basis function model (BFM), and a “reduced” full reference tissue model 
(R-FRTM)] and different particles within each model. Fitting is done for 100 times for each particle within each model.
Note: the red data are outliers of the data distributions.
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based models could have stemmed from an overestimation in the 
assumed value of k2 (which was assumed to be 0.1 min-1 in the animal 
experiments). Figure 6 presents a sensitivity profile of the error in 
receptor concentration estimation using GARTM given errors in 
assumed k2 for tracers of different sizes from small to x-large, using 
K1 and k2 parameters from de Lussanet et al. as a reference [30]. The 
slight underestimation in receptor concentration of the BFM was 
found to be attributable to the fit constraints, which are effectively 
realized in the pre-specified range for θ3.In fact, the BFM could 
perhaps be considered the best overall model if it weren’t for the 
known sensitivity in estimations to the parameters of the fit [21]. 
The model is nearly as fast as SRTM_lin, more stable in low binding 
tissues, and can have excellent accuracy and precision; although its 
sensitivity to the constraints, especially to the lower bound of the 
θ3 range, is such that a 1 percent change in the lower bound could 
sometimes yield a 20 percent change in the estimated BP value. 

All figures do not include results from the FRTM because fits 
using this model resulted in largely spurious estimates of EGFR 
concentration estimates of -0.03 and -0.05 for the U251 and A431 
tumor groups, respectively. It may just be that the model requires 
careful consideration of starting parameters and constraints in 
the fitting; however, the fourth degree of freedom is known to be 
problematic, which is why this model is rarely used in reference 
tissue modelling [15].The “reduced” FRTM, however, wherein R1 was 
set equal to 1 to reduce the number of fitting parameters to three (a 
constraint only possible in dual-tracer imaging and not possible in 
reference tissue modelling), produced promising results. According 
to this finding, it was presumed that a similar constraint (setting 
R1=1) would also improve the characteristics of the SRTM and 
SRTM_lin; however, these new “two-parameter” models were tested 
both in simulation and on the animal data, where they were found to 
be very unstable. Presumably, this is because including R1 as a fitting 
parameter provides a necessary degree of freedom to deal with small 

differences in scale between the targeted and untargeted tracer uptake 
curves that was unnecessary in the reduced FRTM (i.e., fitting for R1 
can help account for any bias caused by noise or imprecise detector 
efficiency normalization, while setting it to 1 causes other parameters 
to suffer from the bias in a more unstable manner).

One very interesting potential advantage of the reduced-FRTM 
that requires future study, is that it is the only model that does not 
make an assumption of an instantaneous equilibrium between the 
free and bound concentrations of targeted tracer in its compartment 
model (the so-called “adiabatic approximation” [15]): see Fig. 1(c). 
The binding kinetics of EGF [27], the targeting ligand employed 
in the animal experiments in this study, and the similar levels of k3 
and k4 employed in the simulations, appear to support the adiabatic 
approximation; however, larger, more specific targeting moieties 
may have slower binding kinetics that would preclude validity of 
the approximation [33]. It is for these applications that the reduced-
FRTM could have a unique advantage.

Some other less substantial findings warrant some discussion. 
It was found that the specification of upper and lower bounds for 
models using the built-in function lsqcurvefit() was an issue that 
needed to be dealt with carefully. Without specifying the proper 
bounds, SRTM and the Reduced FRTM tended to produce out of 
bound or ‘saturated’ values for EGFR concentration at some pixels 
in the animal experiment results (presumably owing to noise and the 
abnormal behaviour of the targeted and untargeted curves at those 
pixels). Cselenyi et al. have set these outlier values to zero in their 
algorithm, thus getting binding potential maps that contain ‘holes’ 
[34]. In this study, the fitting procedure was constrained instead, by 
manually altering the constraints until achieving the optimum results 
and a ‘clean’ parametric map. Future work is on-going to determine 
a more automated approach for selecting the parameters of the fit.

In terms of speed, the SRTM_lin model was the fastest and the 
Reduced FRTM the slowest. SRTM was about 10 times slower than 
GARTM and BFM, but not necessarily more efficient. For SRTM 
and Reduced FRTM, MATLAB’s lsqcurvefit() function was used 
to incorporate constraints on fitted values; otherwise the models 
would overload for some experimental cases. The employment of 
lsqcurvefit() in these models had two effects: first, it slowed down the 
optimization algorithm (SRTM_lin is the fastest because it does not 
use such constraints and performs the fit with a simple back-slash 
operator); second, the constraints need to be manually selected for 
each case to avoid out of bound values for fit parameters. It would 
be worthwhile to employ other optimization toolboxes for these 
two models to both speed them up and also automate the process of 
finding their constraints. The Reduced FRTM could also be linearized 
in a similar manner as SRTM_lin for increased speed. This is left for 
future studies.

Conclusion
A reduced version of the full two-compartment kinetic model, 

along with five other prevalent kinetic modelling approaches used 
widely in tracer kinetics nomenclature were studied, implemented, 
and evaluated in this study; with particular emphasis on employment 
of these models in a dual-tracer modeling framework. Evaluation was 
carried out in EGFR targeted studies in experimental mouse tumor 
xenograft models, and was supported by theoretical simulations. In 

Figure 6: Sensitivity of the results of the graphical analysis reference tissue 
model (GARTM) to errors in the value of k2. The true k2 is 0.13 in this case 
and the noise added to the curves is 3%.
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general, no single model outperformed the others for dual-tracer 
modeling; instead, each model came with their own strengths and 
weaknesses. Overall, the reduced FRTM, SRTM, and SRTM_lin 
models provided the most accurate estimates of binding potential 
in simulations and experimental results; however, they did result 
in larger variation to noise compared to GARTM and the Gunn 
approaches. One potential advantage of the reduced FRTM is that it 
is the only model that does not assume an instantaneous equilibrium 
between the bound and free compartments of the targeted tracer 
model. Future work will explore the potential advantages of this 
model for estimating binding kinetics of larger targeting moieties 
such as antibodies that may not obey this assumption [33]. If the 
instantaneous equilibrium assumption is valid, the SRTM_lin model 
could be argued to provide a good balance of advantages. It was 
considerably faster than all other models except for GARTM, it does 
not require an estimate of k2 (as is the case with GARTM), and it 
provided the most accurate results in simulations.
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