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Abstract

The trait versus state measures is highlighted as controversy in psychiatry 
and psychology. Trait markers are associated typically with retest stable genetic 
characteristics, such as personality dimensions. In clinical psychiatry trait 
biomarkers are incorporated into the endophenotype model. State dependent 
biomarkers on the other hand are case and state sensitive, appropriate for 
monitoring of disease course and outcome. There are reviewed Qualitative 
EEG (QEEG), structural and functional neuroimaging markers as related to 
different diagnosis and outcome from treatment in psychiatry. The issue of 
translation across disciplines involved in psychiatric diagnosis is considered to 
be underpinned by the concordance and synchronicity of the data under the 
model of trans-disciplinary validation.
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The term endophenotype (EP) is used often to describe a kind of trait 
marker that relates only to the genetically influenced characteristics 
of the phenotype. In the present literature there are several definitions 
of the EP [5] that emphasize on its heritability, association with the 
illness, state independence and co-segregation within families. It 
is expected that the EP is found at higher rate in unaffected family 
members than in the general population. It is assumed also that they 
are closer to the genes involved in the development of a disorder than 
are the clinical manifestations (e.g. the phenotype) and are influenced 
by a smaller number of genetic and environmental factors. Thus the 
EP approach is expected to increase the power of genetic studies of 
psychiatric disorders. The search for putative EPs is gaining more 
and more speed in the recent years and in the following lines we 
will try to make a short review of the most prominent findings in 
the area. Different endophenotype strategies have been considered 
for schizophrenia and bipolar disorders [5,6]. As a component of 
those strategies there have been performed a number of genetic 
and genomic studies [6,7]. However those studies need further 
confirmation in order to have any diagnostic validity for psychiatric 
nosology.

A specific approach within the endophenotype strategy of 
schizophrenia is the At-Risk-Mental-State paradigm [7]. It includes 
neuroimaging biomarkers for identifications of subjects at high risk 
of transition to psychosis. Structural and functional alterations in 
the cingulate cortex have been reported at a meta-analytical level 
in subjects presenting with a first episode of psychosis [8]. Meta 
analyses of whole brain structural studies comparing HR subjects 
with controls confirmed reduced gray matter volume in the HR as 
compared to controls in the cingulate cortices as well as in temporal, 
prefrontal, parahippocampal/hippocampal regions [9,10]. Volumetric 
reductions in cingulate and temporal, insular, prefrontal cortex and 
in cerebellum have been also associated with clinical outcome, the 
development of psychosis over follow-up [11,12].

Trait Diagnostic Biomarkers in Psychiatry
The state versus trait controversy in determination of the 

diagnostic value of certain biomarkers corresponds to the same 
dichotomy in methodology of clinical psychology measures. Traits 
are defined in both settings as retest stable life time features to 
characterize the functioning of the system and its abnormalities 
The dimensions of personality are taken as typical traits in clinical 
psychology (e.g. temperament and character), which also have 
neurobiological correlates. It has been successfully demonstrated 
the link of traits to neurobiological processes in the psychobiological 
model of personality as developed by Cloninger [1,2] as well as in 
studies derived from Eysenck’s model of personality. In Eysenck’s 
theory [3] personality dimensions of extroversion is considered to be 
associated with the arousal of the cerebral cortex, whilst neuroticism 
is linked to the function of the limbic system.

In psychobiological theory of personality by Cloninger, the brain 
circuit regulating persistence has been determined to involve the 
anterior cingulate cortex (Brodmann area 24), orbitofrontal cortex 
(Brodmann area 47), and the ventral striatum, which regulates 
conditioning of reward-seeking behavior. Real-time testing of circuit 
activity was carried out by varying the proportion of neutral stimuli 
when people were asked to rate pictures as pleasant, neutral, or 
unpleasant during functional magnetic resonance imaging. Circuit 
activity increased, along with increasing proportions of neutral 
pictures in highly persistent people, whereas it decreased under the 
same conditions in impersistent people; this nonlinear effect was 
direct evidence of a complex adaptive system. In addition, ratings of 
affective valence (i.e., pleasant or unpleasant) depended on nonlinear 
interactions of persistence with harm avoidance and self-directedness, 
which themselves modulate connectivity of the anterior cingulum 
with the amygdala and the medial prefrontal cortex respectively [4].

In psychiatry on the other hand trait or state-independent 
biomarkers are typically unified under the concept of endophenotype. 
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State Dependent Biomarkers for Diagnosis 
and Treatment of Depression

A state-dependent marker usually is defined as characteristic of 
the clinical status, while a trait marker is present prior to clinical 
manifestation and is related to the pathophysiology of a disorder. 
There has been collected evidence over the past years about various 
state biomarkers, such as Electro-Encephalography (EEG) and brain 
imaging derived markers. 

Potential EEG-derived markers
Quantitative EEG (QEEG) involves computerized spectral 

analysis of the signals, which could be much more informative 
in a research setting than the classical visual inspection of EEG 
recordings. Suggested EEG/QEEG predictors of antidepressive (AD)-
treatment response include alpha and theta power, alpha asymmetry, 
theta cordance and ATR (antidepressant treatment response) index 
[14,15].

Pre-treatment (baseline) EEG markers include relatively 
controversial results by evaluation of Alpha power and alpha 
asymmetry and Theta power.

More consistent results were produced by the use of Low 
Resolution Electromagnetic Tomography Analysis (LORETA) [16] to 
measure theta activity localized specifically to the rostral Anterior 
Cingulate Cortex (rACC). There has been reported that rACC activity 
predicted treatment response with 64% sensitivity and 67% specificity. 
For more details please refer to Kandilarova and Stoyanov [17,18].

Treatment emergent EEG markers include Frontal Theta Cordance 
(FTC). Studies on frontal theta cordance present most consistent 
results supporting the predictive value of its early changes during 
AD-treatment. Cordance is derived from the absolute and relative 
power of the signal in different bands according to a specific formula 
[19]. Early change in FTC accurately predicted treatment response 
with 69% sensitivity, 75% specificity, 75 % positive predictive value 
and 69% negative predictive value. 

Furthermore Iosifescu et al. [20] developed retrospectively a 
QEEG-derived marker called the Antidepressant Treatment Response 
index (ATR). It combines EEG results collected at baseline and week 1 
and is presented as probability score ranging from 0 (low probability) 
to 100 (high probability). The ATR index predicted response to 
treatment with SSRIs or SNRI with 82% sensitivity, 54% specificity 
and 70 % overall accuracy. 

The Biomarkers for Rapid Identification of Treatment 
Effectiveness in Major Depression (BRITE-MD) study was designed 
to prospectively evaluate several possible neurophysiologic and 
clinical measures that could be useful in AD-treatment choice [21]. 
It included 220 depressed subjects that received escitalopram 10 mg 
during the first week and were then randomly assigned to continue 
the same medication or switch to alternative treatment. The ATR 
index predicted response with 74% overall accuracy, 58% sensitivity, 
91 % specificity, 88% positive predictive value, and 67% negative 
predictive value. 

Potential neuroimaging-derived markers 
Structural neuroimaging findings relevant to the treatment 

outcome prediction are summarized in Table 1 [22-28].

Functional neuroimaging data are potentially significant 
especially when incorporated in multimodal assessment Figure 1, 
including EEG derived markers. This approach combines the special 
resolution of e.g. functional magnetic resonance imaging (fMRI) with 
the temporal resolution of the continuous record performed with 
QEEG. In this way simultaneous dynamics of neural correlates might 
be monitored in anti-depressive treatment response. There are two 
major groups of functional neuroimaging techniques implemented 
in psychiatry: positron emission tomography and fMRI Some of the 
most significant investigations with PET-measures are summarized 
in Table 2 [29-35].

The most promising state dependent biomarkers for depression 
are collected with fMRI. There have been developed two major 
approaches: resting state and task related. Resting state fMRI has 
proven to produce reliable measures of functional connectivity. In a 
recent functional connectivity MRI study of 13 depressed patients, 
on various medications, Kozel et al. [36] found that treatment 
response correlated with the degree of connectivity between several 
brain regions, the most robust being the negative correlation between 
subcallosal cortex and the anterior cingulate cortex. In order to 
illustrate the potential predictive value of their finding, the authors 
give the following example: “choosing a connectivity value of less 
than 0.1 for the left subcallosal cortex to the left anterior cingulate as a 

Study Biomarker Outcome measure
Frodl et al, 
Kronmuller et al. 
[22,23]

lower hippocampal volume worse clinical outcome, 
risk of relapse

MacQueen, Yucel 
et al. [24]

larger pre-treatment posterior 
hippocampal volume

Increase of remission 
rate and duration

Samann, Hohn et 
al. [25] larger left hippocampal volume Beneficial treatment 

response

Chen, Ridler et al. 
[26]

greater grey matter volume 
in ACC

faster improvement rates, 
lower residual symptom 
scores after 8 weeks of 
AD treatment

Li, Lin et al. [27]
reduced grey matter volume in 
dorsolateral prefrontal cortex 
(DLPFC)

Differentiates remitters 
from non-remitters

Delorenzo et al. [28]

lower average fractional 
anisotropy (FA) in DW-
MRI-derived tracts from the 
midbrain to the right amygdala

Non-remitters

Table 1: Structural neuroimaging findings relevant to the treatment outcome 
prediction are summarized in Table 1 [22-28].

DLPFC: Dorsolateral Prefrontal Cortex; FA: Fractional Anisotropy; DW-MRI: 
Diffusion-Weighted Magnetic Resonance Imaging; ACC: Anterior Cingular 
Cortex; AD: Anti-Depressive

Depression clinical 
measurement tools: 
 
Depression scale 

Neuro-correlates 
With hypothesized  
Linkage to bipolar 
depression 
 
 

Neuro- correlates 
With hypothesized 
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To schizophrenia 
 

Schizophrenia 
clinical assessment 
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Paranoia scale 
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Figure 1: Multimodal diagnostic assessment in psychiatry. 
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predictor of treatment response, 11 of the 13 participants (85% accuracy) 
would have had their treatment outcome correctly ascertained prior to 
treatment”. 

However the larger body of fMRI evidence was collected in 
studies using event-related or block designs where participants had to 
engage in different tasks. The most common task-related fMRI studies 
obtained sequential scans while subjects were viewing emotionally 
valenced (sad, happy, angry, fearful) and neutral faces.

Some of the most important findings are highlighted in Table 3 
[37-47].

Instead a Conclusion: The Issue of 
Translation

The emergent issue of trans-disciplinary validation or translation 
is defined as ability of the different databases involved in psychiatry to 
be translated one to another in order to underpin sound explanatory 
models and diagnostic strategies [48-51].

Contrastingly to other medical disciplines, where inter-
disciplinary translation is an established standard, in clinical 
psychiatry it is yet far out of reach. In our model of translation we aim 
at integration of the diagnostic biomarkers from in-vivo neuroimaging 
by real time application of clinical assessment tools, QEEG and fMRI. 
In this way it is provided concordance and synchronization of the 
measures, which is an utmost prerequisite for establishment of sound 
validity across disciplines involved in psychiatric diagnosis.

As it is illustrated the translational validity across disciplines is 
constituted by means of both divergent (blue arrows) and convergent 

(red arrows) validation of clinical assessment tools with in-vivo bio-
markers of diagnosis in real time [52]. The translation is considered 
as correspondence (concordance) between the domains of expertise.
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