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regulatory oversight. Inadvertent exposures to nanomaterials through 
inhalation, ingestion, penetration of dermal layers, or deliberate 
parenteral administration may result in subsequent systemic 
distribution through the circulatory system. Indeed, the increased 
production of nanomaterial, especially carbon nanotubes has raised 
concerns over potential risks of adverse human health effects [11]. 
Titanium dioxide nanoparticles, considered as biologically inert, 
have been extensively used as additives in sunscreen products, 
antimicrobial, bio-medical ceramic and implanted biomaterials, 
plastic packaging, and self-cleaning sanitary ceramics. Their 
widespread use has raised the question of potential adverse effects 
and health risks to workers as well as to the general population. 
As a matter of fact, in vitro and in vivo studies have showed toxic 
effects such as chronic pulmonary inflammation, changes in gene 
expression including apoptosis-related genes and inflammatory 
genes, and promotion of oxidative stress and DNA damage responses 
[12]. Cerium oxide nanoparticle (CeO2 NP), another metal oxide, has 
expanded beyond its traditional role as polishing agents to be found 
in television tubes components, in precision optics materials and in 
various consumer products including semiconductors. The use of 
cerium oxide as a fuel borne catalyst improves fuel burning efficiency; 
as a result, CeO2 NP are directly released into the environment with 
no clear impact on human health [13].  However, a recent study 
showed combined nanoceria with diesel exhaust nanoparticles from 
diesel engine induced pulmonary fibrosis and renewed concerns for 
its safety [14]. In the agricultural arena, untransformed CeO2 NPs are 
up taken and stored in a variety of plants including soybean, corn, 
cucumber, tomato, and cilantro. While majority of the CeO2 NPs 
absorbed in hydroponics plants remains in the nascent form, a small 
percentage is biotransformed to CePO4 and to cerium carboxylates 
[15].Owing to its natural multivalent state, nanoceria has been 
proposed as a novel therapeutic strategy to cerium neurodegenerative 
diseases in human including oxidative stress-mediated ocular diseases 
such as age-related macular degeneration and retinal angiomatous 
proliferation [16]. As a redox mediator ceria can bind reactive 
oxygen species reversibly. Internalized nanoceria elicits responses 
with both therapeutic effects and as oxidative stress inducer [17,18]. 
Experimental exposure of high iv dose of nanoceria quickly saturated 
elements of the reticuloendothelial system in liver and spleen, 
together with sustained proliferation of T lymphocytes, resulted in 
the formation of granuloma in the rat [19]. The behavior of CeO2 

NP in plants may undergo biotransformation with the assistance of 
PO4 and other organic acids, to modulate their toxicity potential [15]. 
Regarding the biotransformation of nanoceria in mammalian system, 
a recent report examined the fate of nanoceria while being retained 
in the hepatic phagolysosomes and found the release of a secondary 
plum of the CeO2 NPs.These very small 1-3 nm CeO2 NPs are known 
to reduce free radical formation [20]. The in situ formation and 
release of secondary CeO2-plum signifies the discharge of cerium ions 
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New material synthesis through manipulation of atoms has 

spurred interest in nanotechnology development for more than five 
decades [1]. Materials with at least one dimension sized from 1 to 100 
nanometers have been manufactured with enhanced physical strength 
and greater chemical reactivity than their larger-scale counterparts. 
At this dimension, some material properties are governed by the laws 
of atomic physics. Today nanotechnology touches nearly all aspects 
of our lives and for biomedical researchers nanotechnology holds the 
promise of new drug formulation and new approaches of molecular 
targeting therapies [2,3]. Other discoveries in nanotechnology that 
influence agricultural developments, environmental sciences, and for 
material science advancement including nanocomposites have been 
made [4,5]. 

Nanomaterial for medical applications alone has been projected, 
with a compound annual growth rate of 13.5%, to surpass $100 
billion in 2014 [6]. However, challenge simposed by technical 
limitations have allowed the successful emergence of only a few nano-
therapeutics that included doxorubicin-loaded liposomes, paclitaxel 
micelles and albumin-bound paclitaxel nanoparticles as well as few 
injectable materials. It should be noted that most materials currently 
used for gene delivery or with good photo-electric properties designs 
have limited therapeutic applications due to the systemic toxicity 
concerns. Natural materials with little inherent toxic components 
could offer superior alternatives in the future. CNS disorders, such 
as inflammation and psychosis may be ameliorated by brain targeting 
nanoparticles [2,3,7]. Systemic released microvesicles and exosomes, 
nanoparticles containing small RNAs, mRNA and proteins may be 
used to affect cells at distant sites. Through autocrine, paracrine, and 
endocrine signaling these vesicles may be regarded as a component 
of a newly identified intercellular communication system [8,9]. 
Investigations on the edible nanoemulsion-based delivery systems 
could further enhance the bioavailability of these encapsulated 
substances [10]. Future studies on the nanoemulsion- induced 
exosomes release from the gastrointestinal tract could offer valuable 
clues on the additional functional importance of these nanoparticles.

Despite the plethora of benefits, potential toxicity of biomaterials 
remains a concern and the bioretention of nanomaterial necessitates 
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from the iv-infused ceria in the liver for systemic distribution. Aside 
from the obvious implication in the principal of administration, 
delivery, metabolism and elimination (ADME) for nanomaterial, 
the observed in situ biotransformation appeared to play a functional 
role in oxidative stress reversal found in the rat brain [21]. Perhaps 
due to their miniature dimension, migration pathway from cell 
cytoplasm interior to extracellular domains remains to be identified 
for this nanomaterial; nevertheless, biotransformation clearly is a 
pivotal bioprocessing junction for many of the newly manufactured 
nanomaterial.   

Applying the principal of ADME, a framework can be developed 
for analyzing and evaluating the biological impact of nanomaterial to 
safeguard cell, tissue, and organisms.  Tiered toxicity testing involving 
cell-free, cellular and in vivo methodologies have been developed with 
endpoints relating to induction of oxidative stress, inflammation, geno 
toxicity and others to determine the safe levels for human exposure. 
Parallel structural biology analysis using advanced instrumentation 
for image generation reaching near-atomic resolution should be 
encouraged in future studies in risk assessment of nanomaterial and 
for their beneficial applications. 
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