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Abstract

Plants, as sessile living organisms, are dependent on signalling mechanisms. 
Mitogen-activated protein kinases (MAPKs) are a highly conserved gene family 
that take a role in switching an extracellular signal into an intercellular signal. 
Ripening-related processes in non-climacteric fruits are not as well understood 
as in climacteric fruits. In this regard, studying MAPKs in grape berries during 
developmental stages may lead to a better understanding of physiological 
interactions during commercially relevant stages, such as pigmentation, 
ripening, and phenolics accumulation in the berries. Each MAPK cascade 
involves three or four MAPK proteins that facilitate signal transduction by 
phosphorylation of downstream targets. We examined the relative expression 
of VvMAP2Ks and VvMAP4Ks in berries at two-weekly intervals, from flowering 
to over-ripening. Expression analysis of 5 MAP2Ks and 7 MAP4Ks suggested 
that both gene families may play an active role in development of berries. 
Expression of VvMAP2K1 showed a correlation with abscisic acid (ABA) and 
ethylene accumulation. Moreover, the expression pattern of VvMAP2K2 and 
VvMAP2K3 shows a correlation with auxin, and ABA accumulation respectively. 
Furthermore, VvMAP2K4 may have a role in berry size increment and halting 
stomatal development. In addition, VvMAP2K5 may play a role in floral organ 
development. VvMAP4Ks expression pattern moves them forward to be 
excellent markers for monitoring the effect of for instance climate change-
related stress on berry development.
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Abbreviations
MAPK: MPK: Mitogen Activated Protein Kinase; MAP2K: 

MAPKK: MKK: Mitogen Activated Protein Kinase Kinase; MAP3K: 
MAPKKK: MKKK: Mitogen Activated Protein Kinase Kinase 
Kinase; MAP4K: MAPKKKK: MKKKK: Mitogen Activated Protein 
Kinase Kinase Kinase Kinase; SDS: Sodium Dodecyl Sulfate; PEG: 
Polyethylene Glycol; PVPP: Polyvinylpolypyrrolidone; ABA: Abscisic 
Acid; JA: Jasmonic Acid; BRs: Brassinosteroids; SIMK: Stress-
Induced Mitogen-Activated Protein Kinase; SAMK: Stress-Activated 
Mitogen-Activated Protein Kinase; WIPK: Wound-Induced 
Mitogen-Activated Protein Kinase; HR: Hypersensitive Response; 
CTR: Constitutive Triple Response; NAA: Naphthaleneacetic Acid; 
DEPC: Diethyl Pyrocarbonate

Introduction
Grapevine is the most widely grown fruit crop in the world, 

covering approximately 7.454 million hectares in 2016 and producing 
more than 270 million hectoliters of wine [1]. The development of 
the grape berry, from fruit setting to overripening, is a complex 
process that requires a large number of events. Although the changes 
that occur as the berry begins to ripen have received considerable 
attention, their overall control and coordination remain poorly 
understood. Signalling regarding coordination is a crucial issue in 
berry development, as the changes that occur at both the physical and 
biochemical levels are considerable and rapid, occurring over only a 

few weeks.

According to Coombe [2], grape berry development is a dynamic 
process divided into three major phases. During Phase I, starting at 
fruit set, the diameter of the grape berry may double in size due to cell 
division and subsequent cell expansion, and organic acids, tannins, 
and hydroxycinnamates accumulate to peak levels. The second major 
phase (Phase II) is defined as a lag phase in which cell expansion ceases 
and berries remain firm. Sugars begin to accumulate and berries lose 
chlorophyll. The beginning of the third major phase (Phase III) is 
marked by ‘veraison’ as the onset of ripening in which berries undergo 
a second period of growth due to additional mesocarp cell expansion, 
accumulation of sugars, pigments, volatile compounds and a decline 
in organic acid accumulation. 

The complexity of the molecular control during berry ripening 
has been exemplified by recent development in transcriptomics. 
Moreover, differential screening, cDNA, and oligonucleotide 
microarray analysis have shown that the expression of thousands of 
genes, including large numbers of transcription factors, do actually 
change during grape berry ripening [3-9]. 

Mitogen-activated protein kinases (MAPKs) represent a large 
group of proteins taking role in signal transduction within a cell. 
They consist of three or four MAPK proteins: MAPK, MAPK kinase 
(MAPKK = MAP2K), MAPK kinase kinase (MAPKKK = MAP3K), 
and MAPK kinase kinase kinase (MAPKKKK = MAP4K). The MAPK 
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pathway plays an important role in the conversion of an extracellular 
signal into an intercellular one through protein phosphorylation. 
MAPK proteins sequentially activate each other by phosphorylation. 
In other words, MAPKs form signalling modules where MAPK kinase 
kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in 
turn activate MAPKs. Activated MAPK can trigger a pathway or 
activate a transcription factor [10,11]. In addition to this, MAPK 
proteins have the potential to crosstalk with other pathways or can act 
as a negative regulator [12]. For instance, CTR1, which is a MAPKKK, 
is known as a negative regulator of ethylene signalling [13]. They are 
highly conserved in eukaryotes including yeast, animals, and plants 
where they are involved in cytokinesis, differentiation, proliferation, 
hormonal responses; abiotic and biotic stress signalling and 
developmental programs [10,14-16].

Expression analysis of MAPK genes during berry developmental 
stages can create an understanding of both primary and secondary 
metabolisms during berry ripening. To our knowledge, this is the first 
report about the expression of VvMAP2Ks and VvMAP4Ks during 
grape berry development. These markers may lead us to a better 
understanding of signalling processes specifically, and grape berry 
development physiology in general.

Materials and Methods
Plant tissue

Seedless grapes, Vitis vinifera ‘Sultana’ berries were used for 
analysis. Berries were collected every two weeks from fruit set (26.05) 
until full ripening (17.09) from an 8-years-old vineyard located at the 
Ege University Agricultural Experiment Station, Izmir, Ege, Turkey. 
Berries were sampled from different blocks, immediately frozen and 
ground in liquid nitrogen to be stored at -80˚C.

RNA extraction 
Total RNA from grape berries of the variety Sultana was extracted 

according to Davies and Robinson [17], with an additional step of 
selective precipitation with 2 M LiCl. The extraction buffer contained 
0.3 M Tris, 5 M Sodium perchlorate monohydrate (ClH2NaO5), 1% 
SDS, 2% PEG, 8.5% PVPP, and just prior to use, 1% β-mercaptoethanol. 
Two grams of ground powder was added to a pre-warmed (30-35°C) 
extraction buffer at 5ml/g of tissue and shaken at 37°C for 90 minutes 
at 180 × rpm. Vacuum filtration was done before adding 96% alcohol 
and was kept overnight at -20°C. 

On the second day, samples were centrifuged at 4°C for 30 minutes 
at 5000 × rpm. 2ml of 70% alcohol was added prior to centrifugation 
at 4°C for 5 minutes at 5000 × rpm. The precipitate was dissolved in 
DEPC water, and mixtures were extracted twice with equal volumes 
of phenol:chloroform:isoamyl alcohol (25:24:1, v/v) then centrifuged 
at 10,000 × rpm for 7 minutes at 4°C. Chloroform:isoamyl alcohol 
(24:1, v/v) was added to the supernatant before a centrifuge at 10,000 
× rpm for 7 minutes at 4°C. Ten % (V/V) of 3 M NaOAc (pH 5.2) 
was added to the supernatant, mixed, and then stored at -80°C for 90 
minutes. Total RNA pellets were collected by centrifugation at 10,000 
× rpm for 20 minutes at 4°C. Each pellet was dissolved in 200µl of 
DEPC water prior to adding 100µl of 10 M LiCl as the last step of the 
second day and this was stored at 4°C for 16-20 hours. On the third 
and the last day, pellets were collected by centrifugation at 10,000 × 
rpm for 40 minutes at 4°C, 500µl of 70% alcohol was added to the 

pellet prior to centrifugation at 10,000 × rpm for 5 minutes at 4°C. 
The pellet was dissolved in 30µl of DEPC water and was stored at 
-20°C.

Quantitative real-time PCR (qRT-PCR)
The expression of MAPK genes in grape berries were confirmed 

by qRT-PCR analysis. Total RNA was extracted from samples as above 
and treated with DNase I (Fermentas, USA). First-strand cDNA was 
performed by using the Transcriptor First Strand cDNA Synthesis Kit 
(Roche, Switzerland) according to the manufacturer’s protocol. 

Çakır and Kılıçkaya [18] revealed the existence of 14 MAPKs, 5 
MAP2Ks, 62 MAP3Ks, and 7 MAP4Ks in Vitis vinifera, which were 
used as primer data information. VvActin was used as a housekeeping 
gene in regard to normalization and elimination of pipetting errors 
[19].

Primers used are listed in Table 1. LightCycler® FastStart DNA 
Master SYBR Green I Kit (Roche, Switzerland) was utilized for 
preparation of qRT-PCR reactions and reactions were run by using 
Roche LightCycler 480. Three replicates were conducted to analyze 
the expression of each gene under each condition. The 2-ΔΔCT method 
was used for calculation of relative expression levels [20]. Transcript 
abundance was normalized to that of Vvactin.

Statistical data analyses
A T-test was performed. The P-value for all primers was less than 

0.01, indicating that the results were statistically significant.

Results
In order to examine expression levels of various MAPKs in Vitis 

vinifera at different stages of berry development, we performed qRT-
PCR. Details about VvMAP2Ks expression are presented in Figure 
1. There was a significant increase in transcript levels of VvMAP2K1 
at the flowering stage, one month before veraison, during veraison 
and a month after veraison. However, the expression of VvMAP2K1 
was strongly suppressed during the ripening period and suddenly 
increased in the over-ripening period. Furthermore, an increase was 
observed in the expression of VvMAP2K2 during flowering, as well as 
in week six and explicit at veraison. When the expression profile of the 
VvMAP2K3 gene was examined, it was clear that its expression also 
increases during the veraison period. The expression level was quite 
low before and after veraison. Relative expression of VvMAP2K4 
showed increments at flowering and veraison and a month after 
veraison. The VvMAP2K5 gene showed high expression in the period 
of flowering, veraison, and just before ripening. Expression of this 
gene was suppressed one month after the fruit set and during ripening.

Details about the expression VvMAP4Ks were shown in Figure 2. 
Expression of the VvMAP4K1 gene gradually increased from veraison 
at two weeks before ripening and was suddenly suppressed during 
the ripening period; expression of VvMAP4K2 increased one month 
after the fruit set. In other periods, the expression of the VvMAP4K2 
gene was low. It was observed that the expression of the VvMAP4K3 
gene increased considerably during the veraison period, in contrast 
with the slight expression of the gene after the flowering period and 
one month after veraison. In other periods, the expression of the 
gene remained at deficient levels and was even almost non-existent 
in the ripening period. The VvMAP4K4 suddenly showed a high level 
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of expression one month after fruit set but was then suppressed two 
weeks later. However, it had a low expression level from veraison 
prior to the ripening period. It was also observed that the expression 
of the VvMAP4K5 increased during the period from veraison until 
the period before ripening, and was again suddenly cut out during 
the ripening period. Expression of the VvMAP4K6 increased from 
flowering to fruit set and then dropped down, abruptly increasing one 
month after the fruit set, and becoming suppressed before veraison. 
It increased gradually from the period of veraison to ripening and 
was totally dropped in the ripening period. The expression of the 
VvMAP4K7 again increased suddenly in the veraison period and was 
abruptly suppressed afterward, showing a similar expression until the 
period of overripening.

Discussion
When the expression profiles of the VvMAP2K, and VvMAP4K 

gene families were examined, a decrease in the expression levels of 
all genes was observed during week 16. Besides, it is known that a 
vast number of physiological processes are regulated in week 16 
including but not limited to sugar accumulation, flavour compound 
and anthocyanin production, suggesting the role of VvMAP2Ks and 
VvMAP4Ks in these ranges of processes [21]. Since MAPK genes are 
mainly known to play a role in abiotic and biotic stress, most MAPK-
related breeding programs are aimed at creating resistant vines. Our 
data suggest that any change in MAPK genes will affect not only 
resistance but also berry ripening.

Several studies showed a relation between the expression of 
MAP2K1 and ABA and its effect on defence responses, especially 
abiotic stresses, including salt stress [22-26]. Although the sampled 
vines were not in apparent stress, our data show a positive correlation 
between the expression of VvMAP2K1 and the presence of ABA in 

Gene Locus ID Gene Name Forward Primers (5’-3’) Reverse Primers (5’-3’)

GSVIVT01008476001 VvMAP2K1 AACTCCTACGTGGGCACCTG AATTGGAGCCGTGGGAGTCG

GSVIVT01015155001 VvMAP2K2 ACCAGTTGAGCTTGGCTGACA GCTTGAGAGCAGCCTCCTGA

GSVIVT01015283001 VvMAP2K3 TGCTCAAGAAACCCCTATCAC TCAGAGATAAGCCGCAAACC

GSVIVT01016115001 VvMAP2K4 AGCCGGATCTTGGCTCAGAC CACACCGAGGCTCCAGATGT

GSVIVT01032414001 VvMAP2K5 TGCTCATTTATTGATGCTTGCCTTCA TGCTTCGGACAAATGCCGTT

GSVIVT01012233001 VvMAP4K1 GCGGTGCTAGTGCATCGTC GCCTGAAATCGGGCTTCGTC

GSVIVT01013739001 VvMAP4K2 AGGCTGGGAATATCTTGGTTG TGCATAACTTCAGGAGCCATC

GSVIVT01014297001 VvMAP4K3 GCAATTGGTCATGCAGTGGCA AGTTGCCAGCTCCTGAAGGT

GSVIVT01016074001 VvMAP4K4 TCATCATCCTCATGCCCTTCCC GAGCAGCAGACACGGAGGAA

GSVIVT01019643001 VvMAP4K5 GCTCCTCGAAGAGGTCGGTT CCAAACACTTAACGGCCACCA

GSVIVT01027718001 VvMAP4K6 TTCTCAGAGCCCACTGTTCGT TGGCAATGCAGGGTTCTGGT

GSVIVT01032461001 VvMAP4K7 CCCGAGCGGAACTATAGTGGT TGGGACTGAGCTCTGCTGAAG

 XM_010652725 VvActin GGAATGGTTAAGGCTGGATTTG GGTTGAGAGGAGCTTCAGTTAG

Table 1: Vitis vinifera MAP2K and MAP4K subfamilies and related primers.

Primer information for VvMAP2Ks and VvMAP4Ks. The first column shows the putative gene IDs in the Vitis vinifera genome sequencing project Genoscope (Genoscope 
website: http://www.genoscope.cns.fr/externe/ GenomeBrowser/vitis). Actin gene’s ID is according to NCBI (National Centre for Biotechnology Information). The 
second column contains gene’s preferred name according to Cakir and Kilickaya [18].

Figure 1: Relative expression of VvMAP2K genes from flowering (Week 0) to over-ripening (week 18). Week 2 represents the fruit set that marks the beginning of 
Phase I of berry development. The period from week 6 until the end of week 8 is considered as Lag phase (Phase II). Phase III (veraison) starts at week 10. Week 
16 represents the ripening point.
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berries [27], which remains relatively high from weeks 10 to 14 after 
flowering. 

Stanko et al. [28] showed a correlation between the AtMKK2-
AtMPK10 pathway and auxin accumulation. Plus, Ziliotto et al. [29] 
showed that Naphthalene Acetic Acid (NAA) inhibits ripening in 
berries. Although VvMAP2K2’s expression indicates a correlation 
with IAA in berries from flowering to veraison, it shows a peak in 
expression during veraison when IAA level is low [30]. Since this 
cannot be related to auxin accumulation, our data suggests that 
VvMAP2K2 is not only involved in auxin related pathways and it may 
play a role in other pathways too.

De Zelicourt et al. [31] showed that the MAP3K17/18-MKK3-
MPK1/2/7/14 cascade is under the control of ABA core signalling 
pathway. Similarity in ABA accumulation pattern [27] and 
VvMAP2K3 expression during berry development supports the thesis 
of ABA’s effect on above-mentioned MAPK pathway.

MAP2KK4 genes are known to play a role in controlling cell 
division, organ shape, and size [32,33]. Accordingly, it is assumed 
that the VvMAP2K4 gene may similarly play a role in the berry size 
increment along a sigmoidal growth curve that drops abruptly, due 
to its increased expression level during berry growth. It has been 
reported in previous studies that the MAP2K4 gene is responsible for 
suppressing stomatal development [34,35]. In addition, it is known 
that the stomata of the fruit become dysfunctional in the veraison 
period [36]. An increase in the level of VvMAP2K4 expression in 
this period suggests that it may be associated with halting stomatal 
development. 

Further, MAP2K5 is part of the MKK4/MKK5-MPK6 cascade 
control in maternal embryogenesis and floral organ development [37, 
38]. Relatively high expression of VvMAP2K5 during the flowering 
period supports this idea. Khan et al. [35], showed a correlation 
between brassinosteroids and YODA-MKK4/5-MPK3/6 cascade 
responsible for cellular patterning, and cell’s fate in A. thaliana. 
Since the BRs accumulation in grape berries is high after veraison 
until ripening ([39], our data suggest a relation between BRs and 
VvMAP2K4/5. 

There are two main models about the accumulation of ethylene 

during grape berry development. The first one states its level starts 
high at flowering time and then drops quickly to stay at a low level 
during subsequent berry development ([40, 41]). The second model 
indicates that there is a peak not only during flowering, but also at 
week 8 [42]. In addition to this, Novikova et al. [43], and Ouaked et al. 
[44] showed a correlation between the ethylene and MAPK cascade. 
Our data only supports the first model: VvMAP2K1 is strongly 
present during flowering period and likewise stays relatively low until 
the end of ripening. However, our data do not constitute evidence for 
the second model. In other words, there is no candidates VvMAP2K 
or VvMAP4K that show a peak in expression during week 8. 

The only GA, which is detected in grape berries, is GA3, 
which concentration is relatively high during flowering, decreases 
dramatically and remains low and unchanged through the end of 
berry development [39]. To our knowledge, there is no research 
showing a correlation between GAs and MAPKs. Our data also do 
not show any direct correlation between GA3’s accumulation and 
VvMAPKs expression.

It is clear that MAP4Ks play a role in cascade initiation by sensing 
start signals in the MAPK pathway. A sudden increase and decrease 
of their expression in specific periods may relate to this. In addition 
to this, the characteristic, relatively high expression in only a specific 
period for MAP4Ks suggests their ability to be utilized as markers. 
For instance, VvMAP4K2 could be used as a marker to show the 
initiation of the lag phase. In another example, VvMAP4K3 could be 
used as a marker to show the veraison. The lack of published findings 
on MAP4Ks in plants makes it impossible to come to any more 
conclusions. Additional supportive data are required.

Conclusion
Each expression pattern of the 12 genes belonging to the Vitis 

vinifera VvMAP2K and VvMAP4K subfamilies was examined by 
real-time PCR in different developmental periods of grape berries. 
Although all-over, their expression decreased in the ripening period, 
their expression during other developmental periods widely differed. 
This confirms their role in this important phase of the grape life 
cycle. In addition to this, it is noteworthy to mention that MAP4Ks 
subfamily in plants is not so well studied as it is in human and animal 

Figure 2: Relative expression of VvMAP4K genes from flowering (week 0) to over ripening (week 18). Week 2 represents the fruit set that marks the beginning of 
Phase I of berry development. The period from week 6 until the end of week 8 is considered as Lag phase (Phase II). Phase III (veraison) starts at week 10. Week 
16 represents the ripening point.
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biology. Our results suggested that the MAP4K gene subfamily should 
receive more attention. Their high expression (or lack of expression) 
at specific developmental phases moves them forward to be excellent 
markers for monitoring the effect of for instance climate change 
related stress on berry development. It is noteworthy that MAPK 
proteins can also behave as negative regulators. In other words, not 
only the expression of MAPK genes but their suppression can trigger 
specific pathways. In addition to this, they can crosstalk with other 
pathways. Therefore, the decisive conclusion of their role requires 
more supportive data.
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