Case Report

DIAPH1 Mutation as a Novel Cause of Autosomal Dominant Macro Thrombocytopenia and Hearing Loss

Karki R*, Heilegiorgis Ajebo G#, Savage N² and Kutlar A³

¹Division of Hematology and Oncology, Medstar Harbor Hospital, USA
²Division of Hematology and Oncology, Augusta University, USA
³Department of Pathology, Augusta University, USA

*Corresponding author: Nabin Raj Karki, Division of Hematology and Oncology, Medstar Harbor Hospital, 3001 S Hanover St, Baltimore, 20160, USA

Received: December 18, 2019; Accepted: February 13, 2020; Published: February 20, 2020

Abstract

Macrothrombocytopenia (MTP) is a group of rare disorders characterized by giant platelets, thrombocytopenia and variably associated with abnormal bleeding. Inherited MTP are frequently misdiagnosed as immune thrombocytopenia. Associated second organ manifestation can help narrow down syndromic MTPs. We describe a case of autosomal dominant sensorineural hearing loss and MTP caused by a gain of function mutation in DIAPH1. This mutation causes altered megakaryopoiesis and platelet cytoskeletal deregulation. Although hearing loss and MTP is likely progressive, clinically significant bleeding was not observed. DIAPH1 related MTP can be distinguished clinically from MYH9 mutation by the absence of cataracts and glomerular disease.

Introduction

Macrothrombocytopenia (MTP) is a heterogeneous group of rare disorders characterized by enlarged circulating platelets that are reduced in number and variably associated with abnormal bleeding. A vast majority of MTPs are acquired. Not uncommonly, inherited thrombocytopenia’s are wrongly diagnosed as immune thrombocytopenia’s and patient’s receive futile treatments. A careful search for associated secondary feature may help guide a workup to identify specific genetic aberration. Altered regulation of platelet formation is a feature of several inherited MTPs. This same alteration may give rise to other disorder due to sharing of affected protein in other organs. Here, we describe a novel cause of inherited MTP resulting from a mutation in a cytoskeletal gene DIAPH1 that also manifests in auditory system.

Case Summary

A 35 year old Caucasian male was seen in the outpatient clinic for evaluation of thrombocytopenia. He had a long standing history of thrombocytopenia since childhood. He had undergone major surgeries including appendectomy, spine surgeries, left heel surgery without any bleeding issues, and never had transfusions. He was told in the past that his platelets were large and sticky; and clumped together during assays giving a spuriously low number.

He had a history of severe sensorineural hearing loss requiring cochlear implants. His other medical problems were hypertension, internal carotid artery aneurysm and medication overuse headaches. He denied any renal problems and had normal visual equity.

His manual complete blood counts showed:

- Total leucocyte count: 17,700/µL
- Absolute neutrophil count: 1900/µL
- Hemoglobin: 17.7 gm/dL
- Platelets: 83,000 cells/µL
- Mean platelet volume: 11.9 fl [normal: 7.4-10.4 fl]

Liver function tests: unremarkable
Urine protein: negative
HIV and hepatitis panel: negative
Erythropoietin level: 7.2 mIU/mL [normal: 2.6-18.5]
Platelet Function Assay (PFA): abnormal with
- PFA C/ADP CT: 265 s [normal: 75-110 s]
- PFA C/Epi CT: >300 [normal: 109-183 s]

His family history was notable for hearing problems and low platelet counts in multiple members in his mother’s side. His maternal grandmother, mother, a maternal aunt and a maternal uncle all suffered from hearing problems and low platelet counts. The only one among his mother’s siblings who didn’t have hearing issues was a maternal aunt who also didn’t have low platelet counts. His father side of family doesn’t have anyone with either hearing issues or low platelet counts (Figure 1).

He denied drinking and is a light smoker (<5 cigarettes/day). His only medication is low dose metoprolol for hypertension.

Figure 1: Pedigree with patient marked with arrow and blue shade for affected family members.
platelet surface proteins. However, a subgroup of MTP arising from genes that regulate megakaryocyte maturation or that encode proteins that modulate platelet adhesion and aggregation may be associated with a phenotype of hearing loss, cataract, and glomerulopathy in addition to MTP. Our case had a heterozygous non-sense mutation, p.Arg1213X (c3637C>T) in DIAPH1 gene resulted in a truncated protein. DIAPH1 gene encodes the cytoskeletal regulator and Rho effector Diaphanous related formin 1 (DIAPH1) which is a regulator of megakaryocytopoiesis [2]. DIAPH1 is regulated by a Diaphanous Autoregulatory Domain (DAD) near the carboxy terminus which inhibits DIAPH1 activity through an interaction with the Diaphanous Inhibitory Domain (DID) near the amino terminus. The truncated protein lacks DAD domain and hence is constitutively active resulting in increased filamentous actin and stable microtubules [3]. DIAPH1 is also expressed in the organ of Corti in inner pillar cells and base of outer hair cells, spiral ganglion and cochlear nerve in mice [4]. This gain of function mutation causes autosomal dominant MTP and hearing loss compared to autosomal recessive microphaly caused by biallelic truncating DIAPH1 mutations [5,6].

Syndromic MTP, hearing loss and mild neutropenia in association with DIAPH1 mutation has been reported lately [3,4,7]. Familial clustering of cases and lack of abnormal bleeding in spite of low platelet counts have been uniformly noted. The low platelet and low normal neutrophil counts in our case is similar to other reports. In 1 case series, the hearing loss and MTP was observed to be progressive [7]. DIAPH1 related disease should be differentiated from MYH9 related syndrome where patients have additional findings of cataract and glomerular disease. Although rare, the DIAPH1 p.Arg1213X variant is a cause of autosomal dominant progressive hearing loss and MTP [3]. Inherited macrothrombocytopenias are usually associated with higher MPV and MPD than immune thrombocytopenias [8]. In clinically suspected cases, DIAPH1 should be tested in addition to MYH9.

Conclusions

A gain of function variant in DIAPH1 causes MTP and sensorineural hearing loss and is inherited in an autosomal dominant fashion. DIAPH1 related disease does not cause cataract and glomerular disease as opposed to MYH9 mutation. Patients with hearing loss and MTP should be probed for family history and DIAPH1 should be examined.

References


